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ABSTRACT
STEWART, JOHN STEDMAN. A Theoretical and Experimental Study of Wood
Planer Noise and Its Control. (Under the direction of FRANKLIN DELANO
HART and LARRY HERBERT ROYSTER).

A combined analytical and experimental study of wood planer noise
is made and the results applied to the development of practical noise
contrcl techniques. The investigation entails identification of the
dominant’mechanisms of sound generation and an analysis is presented
which accurately predicts the governing levels of noise emission, Both
the experimental and theoretical studies are concerned with planing
operations in which the length of the board 1s much greater than the
width, The study thus applies to workpleces which can structurally be
characterized as beams as opposed to plates.

The dominant source of planer noise is identified as the board
being surfaced, which is set into vibration by the impact of cutterhead
knives., This is determined from studies made bofh in tﬁe laboratory
and in the field coucerning the effect of board width on the resulting
noise, which indicate a six decibel increase in noise level for each
doubling of board width,

The theoretical development of a model for board vibration defines
the vibrational field set up in the board and serves as a guide for
cutterhead redesién, The relationships governing structural vibratiom
and the resulting radiation of sound are presented in which the phase
cell concept of beam vibration is combined with classical sound radia-
tion expressioné for rectangular pistons. The analytical study con-
solidates previous work on beam radiation and the results are presented

in a unified form. The unified theory 1s valid over a wide frequency

t
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range and has general applicability. The trends deduced from the sound
radiation formulations elucidate the important parameters governing the
radiation of sound and serve as an aild in the design of gquieter ma-
chinery.

An extensive experimental program identifies nolse sources and the
effect of various parameters on planer noise, Techniques of noilse re-
duction are presented along with a discussion of research intc several
areas of noise control. The experimental study, in addition to bearing
out the theory, identifies the importance of operationzl and mainte--
nance variables and has led to the development of practical noise
control techniques which have been implemented on praduction line ma-

chinery.
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1. INTRODUCTION

Noisy machinery has been a characteristic of the wood processing
industry for generations. The noise levels in this industry have
steadily increased as a result of added horsepower, accelerated cut-
terhead speeds, increased mechaﬁization, and in general a stepped up
production tempo. Also characteristic of the woodworking industry are
the comparatively small size but numerous plants that produce.and
utilize woodworking machinery. The result is an industry with a tre-
mendous noise problem but relatively few individual companies large
enough to mount a full scale noise control program. 7This lack of

support has caused researchers to shy away from the woodworking indus-

‘try and 1ts problems. A review of current literature on woodworking

machinery noise reveals that while limited work has been done on the
aerodynamic or rotational noise produced by rotating cutterheads,
little if any serious effort has been made to determine the mechanisms
of noise generation during machine operation. Since the more neisy
woodworking maéhines, such as planers and moulders, are significantly
louder when material is being processed, these studies are of limited
value.

Through a cooperative effort between the Center for Acoustical
Studies at North Carolina State University and Newman Machine Company,
a major manufacturer of woodworking machinery, a research and develop-
ment program was developed that has been directed towards uncovering
ways to reduce noise emission from woodworking machinery. This close
assoclation with a machine manufactur;r has unfolded an opportunity to

[

define a meaningful and interesﬁing problem of value to iundustry in the -
E
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area of noise control and machine design. Through such a liaison
effort, an acoustics and vibration probleﬁ has been defined and carried
to completion through a theoretical and expérimental analysis. The
concepts developed have been successfully designed and implemented into
production line machines,

The type of study described, quite obviously, could not be con-
ducted for all types of woodworking machinery. The type machine se-
lected fsr detailed study was the industrial wood planer, generally
recognized as a major noise source in the industry. The machine con-
siéts basically of a system for feeding lumber on a flat table past a
rotating cutterhead which removes a layer of wood and leaves a smooth

.surface, The impacting of a cutterhead knife or tooth on wood stock is
typical of a great number of wocdworking machines. Thus, the planer is
considered to be representative of many machines as are the vesults and
conclusions of this study.

The research program was developed on the premise that a basic
understanding of the noise generation mechanisms is the best way to
arrive at noise control solutions., The theoretical goal of the program
was to.develop a mathematical model, in a simple usable form, for the
radiation of sound from a wood planer, This model was to be used in
identifying the dominant sources of noise as well as the critical
parameters influencing the radiation, This information could then
serve as a guldeline for the development of practical noise control
techniques. The practical goals were both short and long term in
nature. The design of retrofit systens for existing machinery as well

as major redesign with noise as an im~ortant factor were the objectives,

|



The analysis carried out in this study was both theoretical and
analytical in nature;although the two study areas were not approached
completely independently. A certaln amount of insight was gained by
operating the machine, conducting several preliminary measurements and
making observations, This familiarization with the problem led to the
development of several phases of study, with theory and experiment
interrelated to varying degrees, Chapter 3 deals with the general
famlliarization with the problem and the identification of major noise
sources, which served to define the thecoretiecal aspect of the problem.
Chapters 4 and 5 are theoretical in nature and constitute & definltion
and analysis of the sound radiation problem., Chapter & is essentilally
-experimental in nature, dealing with the effect of various parameters
on the nolse generated as well as actual techniques of coping with the
noise problem, Chapters 7 and 8 summarize the results and =onclusions
of this study. A discussion of noise reduction techniques now in use
or in the final design stage 1s also presented along with plans fou

future study in this area.



2, REVIEW OF LITERATURE

Most of the previous work done on noise in the woodworking indus-
try has been surveyed in a review by J. Howard Smith [28] and a
contract report to the Ministry of Technology prepared by Sound Research
Laboratories [4]. The object of both studies was to seek out and evale
uate all current references on noise and vibration in woodworking ma-
ehinery with special emphasis on planers and moulders, The literature
reviewed deals primarily with aerodynamic (rotational) ncise which
results when a cutterhead i1s rotated near stationary surfaces, The
noise produced when the machine is planing, which is usually slgnifi-
cantly higher than the i1dling noise, has not been examined in detail,
‘ The rotational noise was studied by Cox [7] in a report which
identified the nearness of feed tables to the rvotating cutterhead as a
critical parameter. Pahlitzch [25] and Liegman [19] expanded on this
work, Thunell [37]) investigated the effect of slitting table lips near
the cutterhead. Kuleshov and Grinkov [18] compared the agise levels
produced by square and helical cutterhead knives and observed an appre=-
cliable reduction in the noise level for the Helical cutterhead,
Chizhevskij and Shkalenko [5] found that modifications of table lips
reduced noise levels during machine idle but were ineffective during
the cutting operation. Schmutzler [27] observed that the aoise level
for machine idle increased as the fourth power of cuttarhead speed and
indicated the importance of board vibration in the noise generated by
planers. Several authors have reported a significant increase in the
noise levels produced by planers when{cutting as opposed to idling.

- !

Mazur and Kovtun [23] carried out a series of experiments on a planer,

|



dealing with numerous parameters including board geometry, and observed
an increase in noise level with inereasing board width. Kozyakov [17]
made an experimental study of planer noise in which he identified the
major noise source as rotational noise produced by the cutterheads.,

The literature dealing with noise abatement is concentrated in the
areas of acoustic enclosures and cutterhead redesign. Greenwood [10]
suggested an enclosure design for a planer. Schmutzer [27] also sug-
gested iﬁprovement in machine design to reduce noise at the source.
Stewart and Hart [34] give an experimental evaluation of planer nolse
and its control. Detalls of enclosure construction for woodworking
machinery are outlined by Stewart [33].

The modal analysis technique presented in Chapter 4 was applied to

periodically excited beams by Barnoski [1l] using Fourier transform tech-

niques. Random excitations were also considered in the study, The
phase cell concept of structural vibration has been considered by Smith
[29], Lyon [20},-Maidanik f22], and Lyon and Maidanik [21]. Smith and
Lyon [30] address themselves to the overall problem of sound and struc-
tural vibration using approximate formulations,

The determination of sound power levels from a number of sound
pressure level measurements is outlined for various environments by
Hart and Stewart [11]. The effects of particular environments on sound

pressure and sound power levels 1s also discussed in detail by Beranek

(2).



3. DEFINITION OF THE NOISE PROBLEM IN WOOD PLANERS

3.1 Introduction
In order to define the noilse problem for wood planers it was

necessary to observe the operation of the machine, since a general
understanding of the type of noise produced is regquired before design-
ing an experimental procedure. The sources of planer noise are deter-
mined and the identification of dominant necise sources is accomplished
through energy considerations. A correlation study is utilized to
delineate board radiation as the probable dominant source. The board
width is identified as the most important geowetric parameter since

noise levels are observed to increase as board width increases.

3.2 The Planing Operation

Planers typically fall into the broad categories of; {(a} roughing
type planers, Figure 3.1, which usually surface more than one face of
the material, and (b) cabinet type plamers, Figure 3.2, which usually
surface only one face. For several reasons, including cost and labora-
tory space, a cabinet type planer was selected for a detailed study of
planer noise generation. The roughing planer differs considerably from
the single surfacer in appearance, but removes wood from the board in
much the same manner. Thus, the basic mechanics of the planing opera-
tion are similar for both machines, the major differences being cutter-
head geometry, number of knives and proximity of the cutterhead to
stationary surfaces such as feed beds. The cutterhead geometry defines

the nature of the impact of the cutterhead knives on the wood stock,
. |
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1 Roughing Planer

dustria

<N

Figure 3.1



Figure 3.2

WHITNEY SINGLE SURFACER
MODEL 5-290

Cabinet Type Single Surfacer




while the location of the cutterhead would be expected to affect the

rotational noise produced by the machine.

3.2.1 Sources of Planer Noilse

From a basic. consideration of the possible noise sources for the
planer of Figure 3.2, the following emerge:

(1) Noise produced due to the high vibration level of the board
being surfaced, The vibration is caused by the periodic. impact of the
cutterhead knives upon the surface of the board,

(2) MNoise resulting from the .vibration of the anvil structure.
directly opposite the cutterhead. Vibratory energy is transmitted
directly through the board and into. the anvil and is dissipated in the

.anvil or transmitted on to another component of the machine. The amount
of radiation and the frequency characteristics are dependent upon the.
geometry of thé anvil as well as the energy transmitted from the board
to the anvil.

(3) Rotational noise resulting from the Interaction of the cut-
terhead with the air in the proximlty of statiomary surfaces such as
the anvil and feed beds. This is primarily responsible for machine
idle noise and is typically referred to as "siren noise".

(ﬁ) Noise produced by the electric motors, This aolse can
dominate the idling noise in some machines (especially high frequency
moOtors).

(5) HNoise produced by the dust collection system. This includes
sound radiataed from the dust hood due to particle (chip) impact, cavity

i

resonance, and vibration transmitted directly from the machine.-

| |
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(6) Noise is also produced by other vibrating surfaces such as
housings and feed beds. The means by which this vibratory energy
spreads throughout the machine is (a) transmission from the anvil, and
(b) transmission back through the cutterhead and subsequently through-
out the machine.

(7) Noise produced by the drive train system.

3.2.2 Energy Considerations

In most cases the noise produced while the machine 1is operating is
substantially greater thaﬁ that produced while the machine is idling.
This increase in noise level is related to the impact of the cutterhead
knives on the material being surfaced. When a cutter knife makes con~
" tact with a board, a certain amount of emergy is tranzferred from the
cutterhead into the board. This energy is associ;ted with the force
required to remove a chip from the board and depends on a great number
of parameters, including the hardness of the board being cut and the
sharpness of the knives. A portion of this energy Is distributed
throughout the board causing vibration, while part is transmitted
through the board and into the anvil structure below the cutterhead.
The eﬁergy that is transferred into the board is transmitted internally
throughout the board and 1is dissipated primarily by (1).internal damp-
ing, and (2) the generation of sound. Figure 3.4 1s an energy flow

diagram for the system depicted in Figure 3.3,

3,2.3 Identification of the Dominant Noise Source

To determine the dominant source of planer noise, a series of

sound, pressure level and vibration m-asurements were conducted, The

i
1
|
|
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sound pressure level spectrum, shown in Fipgure 3.5, indicates the
presence of a blade passage frequency of 240 Hz, which corresponds to
a four knife cutterhead rotating at 3600 RPM., Harmonics of 240 Hz
(240 times n, n=1,2,3...,) are also present over an extended frequency
range, indicative of sound produced by structural vibration as opposed
to aerodynamically generated sound, From Figure 3.4 it 1s noted that
considerable energy may be . stored in the board being machined in the
form of ; reverberant vibrational field, Figure 3.6 shows the vibration
(acceleration) spectrum obtalned when a transducer is attached directly
to the board during the planing operation, Again the blade passage
frequency of 240 Hz and the harmonics are present., The excellent cor-
.relation between the sound and vibration narrow band spectra suggests
that board radiation is a dominant nolse generating mechanism. The
dominance of board radiation as a noise source for the planer is evident
experimentally from a study of the effect of various board parameters
on .the radiated noise. Of the numerous parameters that influence the
radiation, board width was found to have the most direct effect on the
noige levels produced. In general the efficiency of the board as a
source. of sound 1s related to the surface area and mean-square velocity
of the board itself, This surface area increases with both ﬁoard width
and length, The length, however, governs the energy distribution in
the board and consequently does not directly affect the resulting noise
levels. This theoretical principle involving source strength for a
vibrating surface was evident experimentally as shown in Figure 3.7,

The sound pressure level at a particular point i1s observed to increase

slx decibels for each doubling of boerd width. This important result,

|
|
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which is discussed in detail in Chapter 5, identifies board radiation

as the dominant source of noise for the planer under study., This

increase in sound pressure level has been observed for numerous planing

operations for roughing and cabinet type planers,

e e
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4. THEORETICAL DEVELOPMENT OF A MODEL FOR BOARD VIBRATION

4.1 Introduction

Board radiation has been identified as the major noise source when
the machine is in operation. In order to study the radiation of sound
from such a vibrating structure, a detailed analysis of the structural
vibration field is necessary. Since the response of the board to a
given input excitation is governed by the frequency composition of the.
exciting force and the resonant frequencies of the board itself, such
an analysis 1s justified. The resulting equations of motion for the
board give valuable information regarding cutterhead impact character-
igtics as well as defining the board radiation field., The governing
‘differential equation of motion is solved subject to simply supported
boundary conditions using the technique of modal analysis. The solu-
tion to the vibration problem is written in terms of Fourief trans-
forms since the Fourier spectrum is of prime interest, A specific
solution is obtained for the special case of periodic excitation which

is typicel of wood planers.

4,2 The Governing Differential Equation of Motion

Board vibration can be modeled by considering a uniform slender
beam, The location of the forcing functien F(x,t) is arbitrary and it
is agssumed that the boundary constraints are conservative, l.e., no
work is done at the boundaries, The constraints ave also assumed to
maintain line contact with the beam so that reflected waves from the
constraints can be neglected, The aspumption of no boundary work is
not always true, but facilitateé calc%lationse

l

!
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For the undamped system, the governing differential equation from

simple beam theory can be written as

4 ' 2
Elg 3yx,e) +p QP_XL}E.LQ = .F(x,t) (4.1)
caxA b Btz _ s

where

E = modulus of elasticity,

I = area moment of Inertia of cross section,
(@ = mass per unit length of the beam,

y = lateral displacement,

x = coordinate along the beam length,

t = real time,

E acceleration due to gravity.

c

In equation (4.1) it is assumed that the system is a uniform,
linear, lightly damped, continuous elastic structure excited by a
forcing function dependent on space and time, The effects of rotary
inertia and shear deformation havelbeen neglected and Py s 1, E, and

I are assumed to be constant.

4.3 Consideration of Boundary Conditiouns
For natural boundary conditiens in which the constraint forces
do no work, the natural frequencies of a slender beam are given by
2 Elg J1/2

C
w, = (B/L) B-I-;ﬁ— (4.2)

- e e —— ..



where the coefficient B is characteristic of the particular type of
boundary conditions, and
w = natural frequency of the beam for the nth mode,
2 = length of the beam,
E = modulus of elasticity,
I = area moment of inertia,
Py = mass density,
= cross sectional area.
For modes of order three or higher (n23), [13] gives the expressions
of Table 4.1 for the coefficient 8 for various boundary conditions.
For the frequencies of interest in the radiation preblem, the
.errors involved in calculating the natural frequencies by assuming the
boundary conditions to be simply supported are typicaily less than ten
percent of the lowest frequency of interest. This assumption allows a
simple form describing the mode shapes and the natural frequencies to
be utilized in place of the more complex functions associated with the
true boundary conditions. Thus B = nrt and fn(x) = gin{nnx/L) define
the natural frequencies @ and meode shapes fn(x) respectively, for a
simply. supported beam of length 2. Thus, the natural frequencies of
the beam under consideration are insensitive to the particulér type of
boundary conditlons for frequencies such that the modes of vibration
are above the first few resonances, -For realistic beam geometries this
is the case and the problem is greatly gimplified by assuming the beam

to be simply supported. The problem is reduced from the vibration

model of Figure 4.1 to the simply supported beam of Figure 4,2,

; f

|
|
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Table 4.1 Values of the Coefficient 8 for Various Boundary Conditions

Boundary Conditions B
Free - Free 62%219
Free -~ Pinned (42_3)3
Free - Eéxed (gg:iﬁw
Pinned - Pinned {nim
Pinned - Fixed (i%téaw

Fixed - Fixed

nsdl
(T) {

21
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In the following analysis, simple beam theory neglecting rotary
inertia and shear deformation 1s assumed and damping, in general, is
ignored. Damping may be introdﬁced into the modal solution by formu-
lation of the differential equation in terms of a generalized coordi-

nate.

4.4 The Modal Solution Technigue
Since any deflected shape of the beam can be resoclved into spatial

harmonic components by the method of Fourier analysis, it follows that

yGo,t)= £ G )(E) (4.3)
n=1

‘where the q are the Fouriler coefficients. For a simply supported
beam the terms of the Fourier series are identical with the natural
modes of vibration, but for other boundary conditions are more complex
functions of x, Thus instead of specifying the function y(x) for all
points on the beam, the q, may be specified. The advantage in this
representation is that a good approximation to y(x) may be obtained
by using only the first few terms of the seriles. |

If vy 1s a function of space and time, then

y(x,£) =L ) q (&) £ (x) | (4.4)
n=.1.

and the q, contain the time dependence. The spatlal dependence is

contained in fn; the modes of digsplacement. The q, are the generalized

coordinates corresponding to the modes of displacement fn’

t 1
- [

\
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The functions fn(x) satisfy the homégeneous form of equation (4.2)
subject to the imposed boundary conditions. For the simply supported
beam of Figure 4.2 the fundamental mode of vibration is a simple sine
wave, and the overtones are sine waves with different integral numbers
of half-waves along the beam.

It may be shown from the classical separation of variables approach
that the displacement q, of any one natural mode 1s governed by the

same type of equation as the single degree of freedom system, thus
Mh q + Cn q + Kn q = Ln . (4.5)

The Ferms Mn' Cn' Kn and Ln are, respectively, the generalized
mass, the generalized damping coefficient, the generalized stiffness,
and the generalized force corresponding to the nth normal mode: TFhe- -
coupling through the damping terms is ignored in this analysis. The
generalized mass is the mass Mn’ which has the same kinetic energy
when moving with velccity &n as the whole system moving at velocity
a, £,00, Le.

| L
M &n2/2 = &n2/2 JO PR (fn(x))2 dx ',

L
or M = pbﬂ (fn(x))2 dx {4.6)

The generalized stiffness Kn' is the stiffness of a linear spring

which, when displaced by qn; has the same potential energy as the
i
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actual system when displaced by a, fn(x), i.e,

L

2 2 " 2
Kn q, /2 = q, /2 EI (fn (x))” dx ,

o -

L "
where 1/2 EI (fn (x)2 dx ig the flexural strain energy of the

o
simple beam. Thus

2 n 2 :
K = (£ ()" dx (4.7}

The generalized damping coefficient Cn is the rate at which a simple
damper moving at én disgsipates energy at the same rate as the whole
system of damping forces and pressures on and in the system when moving

at in fn(x)u The generalized viscous damping is given by

. 2
cC = (fn(x)) c{x) dx , {4.8)

where c¢(x) is a viscous dampiﬁg coefficient assumed to vary with x,
The generalized force (Ln) is that single force when moved through
a small distance q does the same amount of work as all the externally

applied forces and pressures acting on the system when the system i1s



moved through a small displacement 9, fn, Thus

I'A
L = fn(x) F (x,t) dx , (4.9)
o
Assuming that
ce(x) = 2§n w M, (4.10)

equation (4.5) can be written as

[ " 2 '
q 2§n w4 twq = Ln/Mn 3 (4.11)

26

where W is . found from the solution to the frequency equation-associated

with the nth mode of the beam, and §n is defined by equation (4.10).

In concluding the modal vibration discussion it is appropriate to
review the assumptions made in developing equation (4.11). Equation
(4.3) represents the steady state response to equation (4.2) from the
contfibutions of an Infinite number of mechanical osclllators (each
responding at its modal frequency) weighted by the mode shape of the
distributed structure. The mode shapes are dependent upon the physical
properties and boundary conditions of the structure, The magnitude of
the contribution from the generalized coordinate is given by the solu~
tion to equation (4.11) and depends upon the initial conditions of the
problem as well as the wvalues of the'generalized parameters, The total

: :

i

- |
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response is obtained from the expressions for the mode shapes and

generalized coordinates by summing as specified by equation (4.3).

4.4.1 Fourier Transform Representation

For excitation containing many closely spaced harmonic components
approaching a continuous spectrum it is convenient to express the
steady state solution using Fourier transforms. Define the transform

. pair as.

Y) = | y(e) e 1t 4o

-0

y(e) = (1/2m | v(el®® 4y (4.12)

-

where Y(w) 1s the Fouriler transform of the displacement response., The
functions Y(w) and y(t) are equivalent ways of representing the re-
sponse; the former is a real function in the time domain and ;he lattex
a complex function in the frequency domain. Figure 4.3 shows an exam~
ple of a Fourier transform pair where the time signal y(t) Is a square
pulse;

Taking the Fourier transform of equation (4.11) under steady state

conditions yields

[—wz + 12§nwnw + wnz] Qn(w) ='L(x,m)/Mn ) {4.13)
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where

-1 {wt)

L
Ln(x,m) = [ F(x,w) fn(x) dx = Ln(x,t) e de. (4.14)

o] . . o

Solving for the transform of the generalized coordinats q gives

. £
, s [
Qn(w) = 5 7 [ F(x,m)fn‘dx. (4.15)
M (l—(u/w& +21§n(m/mn))’s o

[y
nn

The term in brackets is known as the transfer impedance function for
. the system and is denoted by Hn(u).

In the previous analysis only viscous damping, in which the
component of force due to damping is directly proportional to velocity,
was considered, For hysteresis or structural damping the damping term
depends on displacement rather than velocity. Thus the term 2 §nw/wn

is replaced by &, and the démping is independent of frequency. Since

i

Gi is generally small the relation valid for structural damping is

H_(u) = 2 (4.16)
(- (w/w )" + 16,)
and in general
1 (w]) [(*
Qn(w) = n 5 F(x,0) £ (x) dx (4.17)
Muw
nn

29
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Since

e = £ oq o, (4.18)

the complete solution in the frequency domain takes the form

Y(x,u) = T Q (w)f (x)

n=1
w® H(w)g . (4.19)
= I £ (x) F(x,w} £ (x) dx , .19
n=1 n Mow 2J n
non

o

.The displacement in time can be obtained by taking the inverse transform
of equation (4.19)
-1 -1
y(x,t) = Fe {(Y(x,w)} = Fe {L Qn(m) fn(x)} , (4.20)

n=1

-1
where Fe { } denotes the inverse transform and from equation (4.17),

2
Q(w) = [H (&)/ (M « ")) L (x,0).
The convolution in the Fourler sense for two functions A{w) and B(m)
1s of the form

-1
F, {A(w) B(w)} =D A(t-1) B(r) dr ,



Applying the convolution integral to equation (4.19} gives

-1 -1
F, (£ (x) Qo)) = £ (0 F, {Qlw)}

(4.21)
and the response can be represented by
- ‘ ¢ hn(th)
y(x,t) = L f (x) ——— L {x,t) dr s (4.22)
n 2 1
n=1 Mow
o LB

The function hn(r) represents the system response in t to a unit

impulse and Ln denotes the foreing function acting on the system.

Equation (4.21) is seen to define a transformation from a product in

the frequency domain into a convolution integral im the time domaia,
In terms of the Fourier inversion integral the result ias

£ (x)

5 Hn(w)Ln(x,w) ei{Mt)

Y(xst) = (%) ‘E

dw ,{4.23}
n=1 /M uw
nn

The convolution integral of equation (4.22)'represents the
response as a linear superposition of free vibration solutiomns in the
time domain, while the Fourier transform solution of equation (4.23)

represents the response.as a linear superposition in the frequency
) I

1
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domain of steady state responses to simple harmonic excitations. The

solutions must be identical and are related by

n(e) = (1/27) H(w) efU) 4y (4.24)

-l

and

H(w) h(t) e'i(‘”t) at (4.25)

1

-

.which define a Fourler transform pair,

From equation (4.19) the response is

'}
- H {w)
Y(x,0) = & £ (%) L 5 F(x,w) £ (x) dx . (4.26)
n=1 o Mw n
nn
Q

For a force F(x,w) concentrated at x = X, such that F{x,w)

= (F(x))* (F(u)) then

L
J Flw) G(x-xo) fn(x) dx = Flu) » fn(xc) ) {4.27)

o
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Using this fact in equation (4.19) gives

- H (w)
Y(x,0) =T £ (x) = 53 Flw) £ (x)

n=1 M w

nn-
£ (x) £ (x) o (w) (4.28)

=1 £ (x) £ (x Fow » .
n=1 n n o M 2
nn
or

Y(x,0) = (G(w)) (F(w) , (4.29)

and taking the inverse Fourier transform gives

y(x,t) = (1/27) elw) Flw) of(¥t) 4, (4.30)

3

-l

where

f (x) f (x) H (u)
Glw) = § n n 20 n .

n=1 Muw
nn

4,4.2 Power Spectral Density

For simple structures the power spectrum Y(x,w) can be obtained

once the Fourier transform of the excitation signal is found, For an

'
f



excitation F(t) that is a stationary process, the two sided power

spectral density function is given by [2] as
lrel ' (4.31)
S (w) = grgrg , .

where T is the period of the signal. The practical diffference between
the two sided and one sided power spectral density is that for real
signals the magnitude of the former is one-half that of the latter.

It can be shown that if a force F(t) is put into a linear system having
a transfer function H{w), the output y(t) is related to the input F(t)
through the transforms by

vyl 2

- |r] [ne| 2,

or
S, (@) = 5.() - IH(w)| z (4.32)

where‘]H(m)[2 is the square of the transfer function and Sf(m) and
Sy(m) are the input and output power spectral density functions,

respectively.

4,4,3 The Special Case of Periodic Signals

For the special case of periodic signals, the signal may be con-

sldered as the convolution of one period of the sigunal with an impulse

train of period T.

I
1
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If F(t) is the periocdic signal, let

f{t) = F(t); L, <t < to + T

£(t)

0 ; otherwise

and F(t°+jT) = F(to), where 3 = 1,2,3..,

Making use of the Dirac delta function and the convolution property

glves

F(e) = £(0) © § s(tmjr)

j Dem®

where the * denotes convolution.

Taking the Fourier transform of both sides of equation

w  ~L1wiTy
F(w) = £(w) © e ,

j=-oo

or

Flw) = (£(w)/T) T 6(uw - 240/T)

j-u

(4.33)

(4.33) vilelds

{4.34)

(4.35)

where the last term in equation (4.35) 1z periodic in fraquency with

period 1/T Hz,

As an example consider the periodic pulse train of Figure 4.4,

The Fourier transform of the siénal i; shown in Figure 4.6 and consists

35
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of a series of frequency impulses every 1/T Hz. The magnitude of the
impulses is the Fourler transform of the signal over one period divided
by the period T, i1.e,, F(w)/T.

For the assumed simply supported beam of uniform cross section,

the mode shapes and modal frequencles are given by

fn(x) = sin{nmrx/2) s (4.36)
and
) EIgc 1/2
w = (nm/L) p—bg—- . (4.37)

From equation (4.16), assuming hysteresis damping, the gquantity Hn(m)

is

B (w) B 1 ) (4.38)
" st )Pz,

so that equation (4.28) 1is

37

(x,0) = ¢ (x) £ (x) ) (w) | >‘
Y(x,w) = f:(x) £ (x Fw) . (4.39
n=l " noo annz

For a force F(x,w) acting at a position X, on the beam,

fn(xo) = sin(nﬂxolz) and equation (4.39) for the frequaucy response



becomes

1
2
l—(w/wn) +i§i)

- ain(nnx/L) sin{umx /&)
Y{x,w) = L 2
(

n=1 Muw 2
nn.

i Flu). (4.40)
For a periodic forcing function of the form shown in Figure 4,4 the
function F{w) can be expressed as

Flo) = £(o) Fe t(eit)

j::..oa

, ' (4.41)

or
Flo) = (£()/T) T  §(u-2in/T) (4.42)
jn—m
and T .
f) = (/T | £ee)e TRITE/D 4 (4.43)
[+ ]

Thus, equation (4.40) can be written in the form

- sin(nn/L) sin(nmx /&) 1
Y(x,uw) = 5 ° 5
n=1 Mnmn l—(mfwn)'+161

=

il

o B F 5 - AL (4. 44)
3 |
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The Fouriler series pair for describing periodic signals is

\ o 1(w it}
F(t) =Z A (Ju)) e s (4.45)

j=—cn

where w, 1s the fundamental frequency, w, = 2r/T, and

T ~1(u_Jt)
Ao(jmo) = 1/T F(t) e dt . (4.46)
o
The quantity F(w) takes the form
Flw) = §=_m A (Ju,) §(-ju ) (4.47)

which is convenient for use in conjunction with tabulated series

representing various waveforms. Thus

sin{nmx/2) sin(nﬂKO/D

w® 1
bt nmn 0 en i
. f=_w A, (fw,) Su-fu) {4.48)

where Ao(juo) may be evaluated experimentally or determined from the

Fourier series representation. Evaluating the generalized mass for a
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uniform beam of length 2, density py, and cross sectional area @,

glves

2 . .
L e fn(x) dx = p, /2 , (4.49)

so that the frequency response becomes

sin{nnrx/2) sin(nnxoil) 1
2 2.2, 2
n=1 0 (l—(w/wn) ) +r5i

Y{x,u) = (%f) z

. f A Gu) Slu=fu) (4.50)

where the real parg of the transfer impedance Hn(w) has been - taken.
The solution is observed to contain only harmonic components at each
of the forced frequencies {(w). The free‘vibration componenis, in the
presence of damping, decrease rapidlf with time and for practical
purposes disappear. The term sin(nmx/2) is the expected sinusoidal
spatial variation in the response, and sin(nﬂxofi)represents & sup~
pression of frequencies in accord with the location of.the force on
the beam, The forced vibration is observed to occur at the Forced
frequency and harmonics with the amplitude being governed by the damp~

ing term (61) in the vicinity of resonance (m=mn).

4.5 Application te Wood Planers
In the planing operation the beam represents the board being sur-

faced and the harmonic excitinngorce F(x,t) symbolizes the periodic
i
|



impact of the cutting knives on the board. The special case of a
square knife cutterhead arrangement can be represented with regard to
frequency by a fundamental blade passage frequency and harmonics of

this frequency. The contributing fréquencies are given by

fh = BPF times n (Hz) , {4.51)
where BPF 1is the blade passage frequency and n = 1,2,3... .
The blade passage frequency is related to the cutterhead RPM and the

number of knives by
BPF = (RPM)(N)/60 , (4.52)

where N is the number of knives on the cutterhead.

For any type of periodic impact of the blades on the board the
resultiné pulse can be subdivided into a series of pure-tone signals
which are harmonically related, 1.e., all frequencies are integral
multiples of the fundamental frequencf. Thus for any type of blade
impaét.(cutterhead design) that vepeats itself regularly, equation
(4.35) is valid. For the case of aperiodic impact, which caﬁnot be
subdivided into a set of harmonically related pure-tcnes, the response
can be described in termsrof an infinitely large number of pure-tone
components of different frequencles spaced an infinitesimal distance

apart and with different amplitudes.
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5. THEORETICAL DEVELOPMENT OF A MODEL FOR BOARD RADIATION

5.1 Introductiom

The vibration analysis has giveq the response of the board as a
function of time (or frequency) and position on the board. This rep-
resentation is often difficult to use in conjunction with the approxi-
mate relations for radiated sound resulting from a vibrating surface.
For closely spaced harmonic components the vibration state of the
board can be represented by average properties valid strictly for a
reverberant vibrational field. Thus, information regarding the vibra-
tional field obtained from energy considerations or experiments takes
the place of the exact relations of Chapter 4.

In the formulation of a model for board radiation the phase cell
concept of structural vibration is utilized, 1In effect, the board is

considered to be composed of a finite number of radiating piston ele-

ments, The critical frequency, which governs the overall radiation of.

sound from the board, is utilized to divide the radiation problem into
three frequency ranges. Expressions for the radiated sound power are
derived for each frequency range_using formulations for a rectangular
bafflea piston. The baffled restriction is removed by using a theo-
retical analogy with a freely suspended disk.
The radiation characteristics of narrow and wide boards are

compared theoretically and the radiated power is computed numerically.
The computed sound power levels are then converted to average sound

pressure levels using the semireverberant substitution technique,

!
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5.2 The Vibrational Field

The board radiation problem can be modeled by considering the
beam to be composed of a finite number of piston elements. The vibra-
tional field of the board is defined ﬁsing energy principles in terms
of board geometry and energy delivered to the board. Using a simple
piston model to obtain the radiation characteristics and energy con-
siderations to define the velocity field, it is possible to predict
the acoustlc power output of the vibrating board.

In order to properly dimension and lecate the piston elements it
is necessary to specify the mode shapes (eigenfunctions} and natural
frequencies (eigenfrequencies) of the vibrational field. In this
"analysis the response of the board is assumed ﬁ§ be reverberant in
nature; the individual modes being uncoupled and separated in fre-
quency. This is equivalent to assuming an input force consisting of
well spaced pure-tone frequency components with the frequency response.

of the board concentrated in narrow frequency bands.

5.2,1 The Structural Wavelength

‘Above the first few natural modes the natural frequencies are
relatively independent of the particular type of boundary constraints.
The transverse structural wavelength for a uniform, raectangular,
slender beam is given by [3] as

1/4 /2 1/4
p _ [E2s /048] F E

A = =2 = = B e 3 {5.1)
ns f Emn)1/2lzﬂ £ P
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where

lns = modal structural wavelength of the nth mode,
CB = transverse bending wave velocity,
f =. un/2n .

Using equation (4.1) for the natural ffequencies of such a beam, i.e.

2 EIgc 1/2 ,
mn‘— {(g/%) pbn 2 {5.2)

in equation (5.1) above, yields
A = 2m/8 . (5.3)

The factor B depends on the particular mode, which in turn, depends on
the length of the beam. Equation (5.1) indicates that the modal struc-
tural wavelength (Ans) at a particular resonant frequency is dependent
only on the thickness and material constants of the beam. Although the
beam length governs the frequency corresponding to a particglar mode,
the mode shape at a given frequency is independent of beam length.
Equation (5.1) is also independent of the boundary conditions. Figure.
5.1 shows the theoretical variation in wavelength with frequency as a
function of thickness and material, The reference frequency fo.is

taken as the fundamental harmonice frequency in the Fourier spectra of

the excitation. |
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5.2.2 Power and Energy Considerations

From a statistical energy standpoint, the power supplied to the
system must equal the sum of the power lost through damping and the
power radiated as sound into the surrounding air. The steps in deter-
mining the response are given by [2] as:

(1) The total energy stored in the system equals the sum of
the kinetic and potential energles of the structure

By = M <T5> (5.4)
where M is the total mass of the structure and <§2> is the mean-square
. transverse vibrational veleocity averaged over the structure,

{(2) The internal energy dissipation in one ecycle of vibration is

equal to the total stored energy times the dissipation loss factor ng’

At frequency w, Pd = ETmnd where Pd is the power dissipated.
(3) The acoustic power radiated into free space 1s equal to the
mean—-square velocity times the real part of the radiation impedance

function. Thus

P = <% Re Eﬂ =Ry T, (5.5)

where Pa is the radiated acoustic power.

Equation (5.5) is strictly valid if the modes are excited by a
random noise in a narrow bandwidth Aw centered on w, where the space-
time averapge transverse velocit;es ofithe modes within the band are

equal.. This form is chosen sinée it :an be applied when the motion of.

i

|
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the structure is either single mode vibration or a reverberant vibra-
tional field., From equation (5.5) the radiation resistance is defined
as

R = P /<32> ' {5.6)
rad a '
In this case the radiation resistance is independent of the modal
energy of the structure. This is equivalent to assuming that the
mechanical resistance and the acoustic resistance achieve values inde-

pendently of the energy distribution; that is the modes are not coupled.

Using equation (5.4) relating energy, velocity, and mass, glves

<% = E,/M . (5.7

For a beam excited across its entire width (W) by a force (F) per

unit width, the energy input varies with width as

ET ~v W or ET/W = constant . (5.8)

Since the energy input is linearly related to the width, equation

{(5.7) can be written as

=2
V7> = Ep/(p WE L), (5.9)
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where

M = DbWtbL,

p, = density of the beam,
W = width of the beam,

t. = thickness of the bean,

£ = length of the beam,
combining equations (5.8) and (5.9) yields
Vs = (/W) (1/p,£,2) ~ 1/2 (5.10)

for a given density and thickness. The velocity term is observed to be
independent of beam width since more energy is delivered for the wider
beam, thereby rendering the quantity ET/W constant, Equation (5.10)
states that the product of mean-square veloclty and board length is
constanti a result which will be quite useful in obtaining the total

radiated sound power from the beam.

5.3 The Elementary Piston Model for Board Radiatdion -

The present analysis is based on the replacement of the vibrational
field of the beam by an array of rectangular piston radiators, having
the characteristics of monopole radiators insofar as general behavior
is concerned. The phases of the monopoles correspond to the phase of
the vibrational field at each position., Each radiator (piston) has the

dimensions of d (one-half the structrial wavelength, ASIZ) and W (the

- !

width of the piston) and vibrat%s out of phase with a neighboring piston,



For classical bafflaed piston type radiation the radiation resistance

is given by [26] in the form

1 Ka>>1
' e .11
rad v 2 ? G )
(Ka) Ka<<l
where
K = m/Ca,

a = characteristic piston dimension,
w = cilrcular frequency,

C = sgpeed of sound in air,

The expression for the radiation resistance is seen to be dependent on

49

the Ka factor; consequently several frequency ranges must be considered,

The size of the piston element to be used in this modal is determined
by the beam width, (a constant for a given beam) and the structural
wavelength, which depends on frequency. In determining the radiation
produced by a piston radiator, an important considervation 1s the ratilo
of the flexural wavelength in the structure to the wavelengfh of sound
in alr at the same frequency, slnce a compression of air is necessary

for acoustic radiation.

5.3.1 The Critical Frequency

When structural and acoustlc wavelengths are plotted versus fre-

i

quency the curves intersect def@ning’a critical frequency for every

thickness of the beam (see Figu#e 5.2), The critical frequency can be
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observed from the points of intersection shown in Figure 5.2 or calcu-

lated from [2] as

Ag =, 5 CplE=CT/E

which gives

1/2
2 b
£ = (C_“/2m) . (5.12)
[} a
Elg
[+
where
1/4
E_BL ) ZTr(EIgc/DbQ)
f 1/2 ' '
(wn)
and

A_ = the structural wavelength,

h_ = the acoustilc wavelength,

a
Ca = the acoustic wave velocity,
CB = structural wave velocity.

Figures 5.3 and 5.4 show the effect of beam thickness and material on
the critical frequency, respectively.
The importance of the critical frequency is evident in the radia-

tion of sound by an unbounded flexural wave. If the structural wave-
length (As) is larger than the acoustic wavelength (Aa), then by
- { ‘

Huyghens' principle there is a ﬁadiated wave on either side of the
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structure forming the angle 6 = sinnl(ha/ls) between the direction of
propagation and the normal to the structure, As As appreoaches Aa the
angle moves toward its maximum. If AE surpasses AS then & becomes
imaginary and radiation fails. In effect the contrary motions of
adjacent portions of the structure cancel, reéulting in zero radiation.
For a finite beam, interior sections effectively cancel each other
leaving only the end portions as radiators. Three cases of radiation
are considered according to the ratio of Aa to As’ which defiines the
amount of interference between neigﬁboring pistons. This is equivalent
to dividing the radiation problem inte three frequency ranges, belng;
above the critical frequency (ls > Aa), at or near the critical fre-

" quency (AS x Aa), and below the critical frequency (ls < Aa), 'The three
cases can be represented diagramatically, with the shaded areas being
the radiating acoustic sourges in Figures 5.5, 5.6, and 5.7. Above the
critical frequency (AS > ka) the phase cells of Figure 5.5 are decoupled
and cancellation effects are nepligible. At or near the critical fre-
quency (AS = Aa) the cells are coupled but internal cancellation is
incomplete., The radiating area, the shaded portion of ¥igure 5.6, is
a fraction of that for the case above the critical frequency. Below

the critical frequency (As < Aa) the phase cells, acting as pointhw

monopoles localized at the cell center, interfere and intermal cancel-

lation is complete, Only the edge monopoles of Figure 5.7 of half
strength are left as radiators.. T?e three cases considered corfespond

to Ka>1, Kavl, and Ka< 1, respectively, with “a" being a typical

piston {phase cell) dimension. ‘

i
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5.3.2 The Phase Cell Concept

The phase cell concept is used to represent the instantaneous
relative phase of neighboring piston elements constituting the beam.
The length of each piston is determined by the structural wavelength
of the beam at a particular frequency. For example, the pure-tone
component shown in Figure 5.8 would be represented by the phase cell
arrangement of Figure 5.,9. 1In Figure 5.9 the length of each piston
element is d = ASIZ; one-half the structural wavelength.

For the case of a beam mounted in an infinite plane baffle the
radiation can be characterized by an array of rectangular baffled
pistons, with each piston affecting a neighboring piston in accord

-with the three frequency ranges discussed. The model must be altered,
however, to allow for a beam radiating into free space. In analogy
with the freely suspended disk §f [24], the unbaffled piston elements
behave in much the same manner as the 5affled piston for cases such
that Kb >1, where b 1s one-half the vector distance between the
monopole sources located on each piston face. For values of Kb such
that‘KS <1 the monopole sources on each face of the piston exhibit
cancellation effects similar to the case of As < la for neighboring
piston elements. The total radiation of the beam is compcséd of the
contribution of'Np piston elements, where Np is determined by the beam
length, structural wavelength, and Ka factor for the particular fre-
quency of interest.

5.4 Acoustic Power Radiation

Utilizing the phase cell model, 'the radiation resistance can be

- f

approximated in each frequency domain as a function of the variocus beam
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parameters, The total acoustic power (Pa) radiated to the far field

is given by [2] as
2 .
P = R <V > L] ° (5013)

The quantity <§2> is the mean-square (space-time averaged) transverse
velocity of the beam (or piston element). This velocity may be obtained
theoreti;ally using the methods of Chapter 4, or approximated by means
of the energy techniques discussed elsewhere in this section., It has
been shown, (see equation (5.9}), that the quantity <§2> for a rever—
berant vibrational field may be expressed in terms of the beam mass and
.the energy input to the system, The mean-square velocity was observed
to decrease with increasing beam length for a constant energy input, as
expected from the concept of equipartition of energy for reverberant

systems, Repeating equation (5,10)
T2 = B /G, t 2W) ~ 1/8 (5.14)
T/ Pbb .

The duantity ET is the energy stored in the beam and is independent of
the length éf the beam. From equation (5.14) it is observed that for
a particular beam the product €V2> L 1s constant and the resulting
acoustic power output of the beam can be expressed from equation {5.13)
as

L,
Pa = (Rradfk)(£<v >) f consFant-(Rradfﬂ) ) (5.15)

t
¢ L
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Thus, the task 1s reduced to determining the radiation resistance for

the different frequency domains and beam geometries.

5.4.1 Individual Piston Behavior

The piston model formulation is general'(valid for all values of
Ka) for each individual piston, but the number of radiating pistons
(Np) will depend on the particular frequency with respect to the'criti—
cal frequency. Preliminary to determining the values of the radiation
resistance, it is necessary to examine a single unbaffled pilston in
detail to determine the combined behavior of monopole sources located
on each face. This is equivalent to considering a dipole source of
strength Qb for Kb<l, where Q is the equivalent simple source strength.
zThus, the model accounts for short circuiting at low values of Kb for
the unbaffled beam.

Figure 5.10 shows a section through the beam aleng with an indi-
vidual piston element. In the equivalent source model of Figure 5.11,
the monopole sources are considered to be concentrated at the piston
centers, reversed in phase. For the two sources of Figure 5.11 to
form an effective dipole, it is required that b < lalz. In analogy.
with tﬁe freely suspended disk of [24], the radiation resistance can
be represented by

(2pc)1rr2 for Kr>>1
rad = ‘ » - (5.16)
(39c)(Kr)4nr2 for Kr<<l

i

. :
where pc is the specific acoustic imp:dance and v is the disk radius,
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For values of Kr>1 the baffled and unbaffled piston radiation differs
by a factor of two, accounting for radiation from both sides for the
latter case. The radiation is altered only in the range of Kr<l. In
this region (Kr<l) the fo;lowiﬁg expfessions for the radiation resis-
tance are approprilate

bcA(Kr)2/2  (baffled)

Rrad = ’ (5.17)

3pcA(Kr)4 (unbaffled)

for Kr<l,

The radiation efficiency, defined as radiation resistance divided
-by pcA, takes the form
2
(Ke)/2  (batfled)
g = e = ‘ (5.18)

3{Kr) 4 (unbaffled)

for Kr<l,

Thus the radiation efficiency for the baffled piston is greater than
that for the unbaffled piston for small Kr, (Kr<l), The value of Kr
where the curves of o veréus Kr intersect for the two cases 1is found
from equation (5.17) as

(Kr)2/2 = 3(Kr)4 or Kr =1//6 . (5.19)
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Short circuiting is possible for values of Kr<lyé; for values of
Kr>1/€ the radiation for the baffled and unbaffled pistons differ only
by a factor of two., Figure 5.12 indicates the difference in the radia-
tion characteristics for the two casés for Kr<l1/6. For a typical piston

"a" (a = 2r) it is assumed for Ka<l short civcuiting effects

dimension
are possible and for Ka>l they‘are not possible.

The radiation field for a flat, rectangular piston set in a plane
rigid wall is considered; the far field relations for the radiation
impedance being deduced from the well known case of the baffled circu-
lar piston. As indicated, the deviation of the unbaffled beam from the
baffled case due to cancellation is apparent only for values of Ka such

- that Ka<l, where "a" represents an effective diameter.

In accord with [24] fof a baffled circular piston

R, = pcA 8, (Ka) {5.20)

rad ’

where
Bo(Ka) = [1-(2/Ka)J1(Ka)]

and Jl is the Bessel function of order one, The function Bo(Ka) ia
plotted versus Ka in Figure 5.13.
In converting from the baffled circular piston to rhe baffiled
rectangular piston the approximate result given in [24] 13
2 02,
[a® 8q(Ka) = b7 (kD) ]]

R__.= pcA : » (5.21)
3
[a -{bzl 5
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where

l-Jo(Ka)

BD(Ka) = 1.4 (5.22)

(ka)?

and the piston area (A) = ab, with Jo the Bessel function of zero
order. Figure 5.14 indicates the variation of 6, with Ka for a
rectangular piston.

For the special case of a square baffled piston the radiation resis-

tance formula reduces to

Rrad = pcA Bo(Ka) . (5.2
where Bo is defined by equation (5.20). The function 8O(Ka) exhibits

the following properties;

BO(Ka) v 1 ;3 Kaxd
eo(Ka) v Ka : 2<Kac<é » {5.24)

8, (ka) v (Ka)? ; Ka<2
Combining equations (5.24) and 5.23) gives

pcA ;3 Ka>4

Rrad ~ pcA(Ka) ; 2<Ka<4 ' (5,25)
2.2

pcK™A ;3 Ka<2
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The function eo(Ka) 1s plotted versus Ka in Figure 5.15. Interference
effects occurring between faces of the individual unbaffled pistons

are indicated by the dashed portion of the curve for Kac<l.

For an unbaffled beam the value'of Bo to be used in equatien (5.25)
is twice thatlread from Figure 5.15 since Figure 5.15 is based on a
radiating area of only one piston face. The dashed portion of the
curve for Ka<l should be used, since short circuiting may cccur for
the unb;ffled case, The curve applies to each individual piston, thus
the total radiation resistance for the entire beam involves a summation
over the number of radiating ﬁistons. The number of contributing pig-
tons, as pointed out, depends on the ratio of the structural and acous-

. tic wavelength for each frequency.

5.4.2 Application of the Piston Model to a Finlte Beam

The piston model cannot be applied to the beam radiation problem
over the entire frequency range of interest since the number of con-~
tributing piston elements differ In each frequency domain. For this
reason, the radliation problem is divided into three frequency domains
depending on the critical frequency:

fl) Frequencies above the critical frequency where all the
plston elements coﬁtribute to the radilation,

(2) Frequencies at or near the critical frequency where a frac-
tion of the piston elements con;ributeo

(3) Frequencies below the critical freduency where only the end
portions of the beam are assumed to radiate.

The phase cell representation concepé discussed earlier is shown in

Figuré 5.15.

|
|
|
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Case 1. - Above the Critical Frequency

The assumptions fpr this case are:

(1) Above the critical frequency the individual piston elements
of Figure 5.16 radiate independently, i.e., cancellation effects are
not present,

(2) The length of the beam is great compared to the acoustic
wavelength in air for frequencies above the critical frequency.

(35 The plston element dimensions are approximately equal and
the simplified square piston model is sufficiently accurate,

(4) The Ka factor is such that Ka>l so that the radiation for
the baffled and unbaffled cases differ only by a factor of two,
Assumption (3) 1is justified since for typical beam (board) thicknesses
of one-half to two inches the ranée of frequencies involved 1is 1000 to
5000 Hz. From Figure 5.3 it is noted that 4“<AS/2<10" and beam wildths
(W) typically vary from four to twelve inches (4"<W<12“)°

In light of these assumptions, equation (5.21) for the radiation
resistance takes the simplified form of equation (5.23), and for a =

1512 and b = W becomes

R = P /2w [e_(Ra_/2)] | (5.26)
for the baffled piston, and
Rrad = 2pc(lsl2)w [BO(KASIZ)] , (5.27)
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for the unbaffled piston. The previous two equations can be written
in the form

. l
= 5,28
R ad pe(d /2)W [6, (KA /DT p( ( )

where the symbol {g} is understood to mean that the first temm is to
be‘multiplied by a factor of ome for the baffled beam and by a factor
of two for the unbaffled case. This convention will be adopted for

subsequent equations..

Accounting for the number of piston elements coanstituting the

beam (Np), equation (5.23) becomes. N
1
Rrad = NP-Rrad = pcWi [BOCKKS/Z)] 2 3 (5129)
total ..

where the beam length (1) and the number of radiating plstons (Np) are

related through the structural wavelength.(ls) by
L= NP(AS/Z) or N, = z/(kafz) > {5.30)

For the special case when the Ka factor is much greatei than unity
(Ka>>1, Ka>4 is sufficient) the functiom Go(Ka) of equation (5.29)
approaches unity (see Figure 5.15) and the radiation resistance is
essential}y independent of Ka. For this case equations (5028)-§nd
(5.29) can be written as

- R, = ecO /W , ' | (5.31)

rad




and for Np radiating plston elements

R =N = pcWR {5.32)

rad p.Rrad
total

Thus, at high values of Ka the radiated wavelength is small compared
to "a" and each portion of the surface radiates independently and is
separate}y loaded. At high frequency the impendance 1is resistive;
equal to the piston area times the characteristic impedance (pcA) .
For values of Ka such that 1<Ka<4 the curve of eo(Ka) vérsus Ka
of Figure 5.15 can be roughly approximated by obtaining the slope ot

the curve in the region 2<Ka<3; or
B, > Ka/2 ., (5,33)

Using equation (5.33) in equation (5.28) gives for the radiatilon
resistance

5 1/2
R = DCKW (ASIZ) e (54315')
1

rad
Note that the quantity (Kks/2) can be replaced by KW, =mince a square
piston has been assumed (W=A3/2). The radiation resistance for the
entire beam is found by multiplying equation (5.34) by Np; the number
of radiating piston elements, thus

1/2

Rrad = pcKW & . . : (5.35)

total
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The results obtained for the baffled beam can be compgred with

the results obtained in [21] and [22]. Defining the surface area S

(S = W&) the radiation resistance for the baffled case, 2s given by
equations (5.32) and (5.35), is

pcS KW=

Rrad = 2 (5036)
total 1

p cKWS 3 L1<KW<4

For frequencies above the critical frequency such that Ag>Aa and

ﬂ£>Aa, [21] gives the radiation resistance as

' N 2.1/2 _
R g * peS(1-(x /3 07) = pe§ (5.37)
1 . LA L2
where y<1l (high Ka) and y is taken as E—KWLI-(AQ/AS) ) .

For y<l, the radiation resistance is glven as

_ 1 . .
Rrad =3 SpckW (5.38)

which is also the result obtained in [22] for a narrow heam.

Case 2. — Near the Critical Frequency
The assumptions for this case are:
(1) At or near the critical frequency the piston'element; of
Figure 5.16 do not radiate independently. The radiation from one
. phase cell partially cancels that from adjacent cells since they are

f
180 degrees out of phase. Theldegree of cancellation vanges from
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zero, slightly above the eritical frequency, to unity below the critil-
cal frequency.

(2) The beam 1s long compared to the acoustic wavelength
(2>1,/2).

(3) The Kb factor is such that Kb>1 so that the faces of an
{ndividual piston element radiate independently.

(4) The assumption made on the fraction of cancellation over-
powers the magnitude of the errors involved in assuming that AB/2=W
in this frequency range, so that the square piston model is again
assumed.

In regard to assumption (1), the exact degree of cancellation between
neighboring phase cells in the vicinity of the critical frequenc§ is
unknown. In this narrow frequency range the cancellation, theoreti-
cally, jumps from zero to unity. To account for this effect an
average amount of cancellation of one-half can be assumed without
great inaccuracies, which is essentially what is done in [21]. As-
sumption (3) is justified since for midrange values of Ka{l/2<Ka<4)
the two faces of an individual phase cell radiate as independent mono-
poles.

Assuming that neighboring pistons, spaced one-half of a struc-
tural wavelength apart, partially cancel resulting in an effective
decrease in the number of radiating plston elements by a factor of ome-.
half, the expression for the radiation resistance for the square piston
model 1is

L ] 1
R = N R = = pFCWRBDHKAS/Z) > (5.39
total !



where

Rr = pc(ls/Z)W 60(K15/2)

ad (5.40)

g%

and NP = 1/2 [EIAB/Z] since effectively only half of the pilstons
contribute.

The more accurate expression for the rectangular piston model
given by equation (5.21) is

R, =N R__ = .% pewz [

rad p rad 2 .2
total ((ASIZ) ~W")

2 2. .. g}
O /2)%8 _(Kx /2)~d"8(KW)
s ~ O = ] ; . (5.4D

2
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Several special approximations depending on the Ka factor are presentad.

Ka factor less than unity (Ka<l), The function GO for the baffled and

unbaffled piston elements 1s approximated by

(Ka)2/2 (baffled)

(5,42)
B(Ka)a {unbaffled)

so that

2,
(Ra /2)"/2

R = pc(AS/Z)W

4
6(KAs/2)

1
I



and

2
(KRSIZ) /2

= » = 5. 4
i N *R ) 5 pcWHi . (5.44)

total 6(KXS/2)4

R

Ka factor ranging from one to four (1<Ka<4), In this region the curxve

of Figure 5.15 is approximated by

80 = Kaf2 = (KASIZ)IZ = KW/2 (5.,45)

so that
2 1/27] ,
Rrad = pckKW (ASIZ) {(5.46)
1
and
L ) 172
= - = _— 4
R..4 Np L 5 poki ) . (5.47)
total g

Ka factor greater than four (Ka>4), In this Ka reglon the function

Bo(Ka) becomes independent of Ka and approaches unity

B =1 , (5.48)
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so that
1l
Rrad = pc(ASIZ)W ) . (5.49)
and
. 1 1
Rrad = Np.Rrad 3 pcWi ) » (5.50)
total

Since the square piston model has been assumed, the terms (18/2) and

W have been used interchangeably.

| In summary, the following approximate results are obtained for the
radiation resistance for several ranges of Ka for frequencies near the

critical beam frequency.

2 1/4 .
{JchR(KW) 2 ;5 Ku<l
3 (KwW)
2 1/4
R = { peW 2K s l<KW<4 {5.51)
rad 1/2
total
1/2
‘ peWe 2 W4
— 1l

The result obtained in equation (5.51) for l<Ka<4 may be compared

with that of [21] for the baffled beam which also gives

R = l-pcKN L .

- rad & (5.52)

77



78

Case 3. = Below the Critical Frequency

Below the critical frequency the mode shape of the beam fn(x) is
such that the structural wavelength is very short compared to the
acoustic wavelength. Thus the radiation from a crest to a node segment,
shown in Figure 5.17, is effectively cancelled by the radiation from
the a&jacent segment, which is 180 degrees out of phase. By extending
this argument, it is concluded that all the radiation from the central
portion is effectively cancelled, so that the radiation must be
accounted for by the end segments of length (ABIA). The radiation is
equivalent to the coupling of a pair of rigid pistons, each having a
mean-square velocity equal to the mean-square velocity of the whole
‘beam and vibrating with the saﬁe relative phase as the end reglons of
the bean.

Below the critical frequency the faces of individual piston ele-
ments may act as monopoles radiating independently or, for the un-
baffled case, a higher order source (dipole) depending on the frequency
and piston geometry. As diséussed eérlier, the baffled and unbaffled
pistons differ by a factor of two for Ka>l, since the effective radi-
ating area is doubled. For Ka<l short circuiting may occur between
the two radlating faces of the piston for the unbaffled casé. This
leads to lower values of the radiation resistance than the values for
a completely baffled piston, The short circuiting ((Ka)4 term) effect
is shown in Figure 5.12 along with the baffled piston curve ((Kﬁ)2
term) for low values of -Ka. The simplified model for the square piston
element is assumed since in this frequency range the piston (beam)

width-is approximately equal to! the :uantity (AS/Q), If the width {W)

|
|



u 1
is such that 4 <W<12 and the frequency range under consideration

satisfies the relationship 100<£<1000 (Hz), then from Figure 5.2
5"<AB/4<12" so that the square plston model assumption 1s again
justified.

In Figure 5.12 (Ka)4 and (Ka)2 like terms were plotted versus Ka
up to the point of Intersection of the two curves. The dipole effect
of the piston faces is present only for such Ka that the term 3(Ka)4
is less than (Ka)2/2 since the dipole cannot surpass the monopole in
efficiency. The radiation resistance relations are again based on the
square piston model, but in the frequency range below the critical fre-
quency the model cannot be applied without certain res{rictions con~
cerning Ka and the beam length. The siée of the end piston elements
which radiate is now (AS/A}(W), as shown in Figure 5.18.

Several special cases of beam radiation below the critical fre-

quency will be considered;

Radiation from a long beam with (2>Aa/2>ks/2 ; KWw»1l)., This is

equivalent to assuming that the end pistons are sufficiently far apart
to radiate as independent monopoles and the individual pistons faces
radiste independently as if in a baffle. The expression for the radi-

ation resistance from equation (5.23) is

1
Rrad = pcabGO(Ka)'
2
(5.53)
) 1
= pt:(AsM)weo(ms/l.) .
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and since only two piston elements radiate (N_ = 2)

Road = NP-Rrad = 2pc(As/4)W [eo(szfa)] A (5.54)
total .

The function eo(Ka) is agaln approximated for l<Ka<4 by

9 = Kaj2 = KO /82,

(5.55)
)
and since the square pisten model 1s assumed to be valid
8, = KW/2 . (5.56)

Combining equations (5,54), (5.55), and (5.56) and again noting that

only two piston elements radiate (NP=2) the radiation tresistance for

the beam becomes

1

_ 2
Rrad = 2pcKN(AS/4) 52

] (5:57)
total '

for l1lz<Ka<4, where 13/4 has been replaced by W, the piston width.

The results obtained can be compared with those of [21] which

gives

2 2

A 2-0_/A07)

W s s 'a

R__.* pe= (37) s (5.58)
rad K la [(le(ls/Aa]Z)Blz]

|
|
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or

2
Rrad " chK(AS/4) . (5.59)

for the baffled piston since the acoustic wavelength is related to K

by A = 2n/K.

Radiation from a long beam with (£>Aa/2>ksf2 : Kw<l), This is the

case of a beam, long compared to the acoustic wavelength (la), but.
exhibiting dipole effects due to the interference between the faces.of
each piston. Thus the baffled and unbaffled beam must be analyzed
geparatelya The function 60 in this frequency range is noted from

Figure 5.15 to be

o v (a)?/2 (batfled) |
, (5.60)
60 v 3(Ka)4 {unbaffled)

Using equation (5.23) for the square piston model, the radiation resis-

tance per piston becomes

Rrad = pc(ls/&)w eo(Kkslﬁ) (5.61)
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Using equation (5.60) in (5.61) and accounting for two radiating

pistons gives

w22
Riad = N5 Rrad 20e (0 /W .
total 3(xW)

) (5.62)

for Ka<l.

For the case of a baffled beam, [21] gives the radiation resis-

tance for A _>A_, n&>i_ and 7mW<A as
a s a a
R~ opcWP (KA /B, (5.63)
rad s

which is in agreement with equation (5.62),

The remaining cases to be considered are beams which are not long
compared to the acoustic wavelength. This is not the usual case, since
in most practical situations the beam length (L) is greater than three
feet (a machine operaticn requirement) and such low frequencies that
(3'<{Aa/2) are of little interest, For this case the edge monopoles
are coupled, and (a) the individual piston faces are uncoupled (Ka>1),
or (b) the value of Ka is less than unity and the faces are also coupled
(this is applicable to the unbaffled beam.only).

There are two further cases to consider:

(1) The edge monopoles are in phase, and the interference is
constructive producing a total radiated power twice that if separated,

(2) The edge monopoles are opposite in phase giving rise to a

§

dipole, radiating power that is;second order to that of a monopole.

|
|



The resulting radiation may thus be characterized as monopole, dipole,
or quadrupole in nature depending on the relative phase of the end
portions and whether the beam 1s baffled or unbaffled.

The equations governing the radiation resistance in the three
frequency domains associated with the critical frequency are given in
Table 5.1 for baffled and unbaffled beams. The critical frequency to
be used in Table 5.1 for a particular beam geometry and material is

found from Figure 5.2,

5.4,3 An Exact Solution for Beam Radiation

The exact solution for the radiation from an infinitely long
cylindrical beam given by [24] has been generalized in {14] to apply
to beams of elliptic cross section and extended to include beams of
rectangular cross section. An outline of this analysis is presented,
subject to the following assumptions:

(1) The beam {s infinite in extent, thus the radiation 1is
limited to frequencles above the critical frequency (AS>Aa).

(2) Coupling between normal modes of vibration due to dampiang
is neg;ected since the modes are well separated and in theory a uniform
damping force will not couple transverse vibratory modes.

{3) Internal damping is independent of frequency hut does depend
on such factors as material, size, and moisture content and 1s speci-
fied experimentally.

(4) Air viscosity is neglected, reducing the problem to that of
acoustic radiatiomn.

!

(5) The amplitude variation is ‘inusoidal and end effects arve

|
|

neglected.
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Table 5.1 Radiation Resistance for Different Values of the Ka Factor
for Each Frequency Range
Beam Length Piston - Frequency Radiation
Ka Factor Assumption Dimensions Range Resistance
ALL* 2 > Xaf2 A8/2 = £ > fc chleo(KW) Ig}
KW> 4 L > Aa/2 As/f2 = £ > fcr pcWi [;}
2 1
Ke W< 2 > ra/2 rg/2 =z £ > fc 1/2pcW LK {2}
ALL* L > xa/2 rs/2 - f = fc .l/chWEBO(KW) {;}
2. 31
K< W<4 2 > xa/2 AB/2 = f = fc L/4pcKWTL 5
‘ . . (m)zm}
KW<l £ > ra/2 re/2 = £=f pcWl [3(KH)4
: - ‘ 2 1
ALL* L > raf2 A8f2 = £ < fr pcl eo(KW) [2}
n . 2 1
KeW<d L > ra/2 As/2 = f < fé peW” {XW) [;}
2
KW<l L > xa/2 A8/2 = £ < fc ch2 {(KW) Z,I

6 (Kw)

* For values of KW<l the expression given for the radiation resistance

is valid provided the curve corresponding to the baffled or unbaffled

case in Figure (5.16) is used.
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Finite beams vibrating in modes above the first few resonances usually
meet the above assumptions., Subject to these assumptions, [14] gives

the acoustic loss factor (na) as

n, = —Re[FR/vocos(Kx)e_imt)} (l/(wpbWtb)) . (5.64)
where

F, = beam radiation lecading,

n = acoustic loss facter,

Re = real part of quantity,

Py = mass density of the beanm,
w = circular frequency,

W = beam width,

i = /-1,

t, = bean thickness,
t = real time,

v_ = surface velocity,

The loading term Fp 1s a quite complicated combination of ‘Mathieu
functions and their derivatives for which expansions in terms of Bessel:
and Hankel functions are required, The values of the loss factor (na)
versus a dimensionless frequency paraﬁeter (q) are shown in Figure 5,19
for various beam width to thickness ratios, A plqt of Kd given by

1/2
[(Zﬂ/ka)z-(ZN/AB)z] versus frequency reveals that for the thickness

range of interest Kd is essentially 1irdependent of thickenss, making

|
|
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it possible to plot n, versus frequency for various beam widths. The
results, shown in Figure 5.20, are valid only above the critical fre=-
quency for each particular thickness of the beam,

The relation between the radiation resistance (Rrad) and the loss

factor (na) for finite beams 1is given by

(5.65}

?

Rrad = mMna
where w is the circular ffequency and M is the total mass of the
structure,.

At first glance the radlation resistance appears to depend on the

mass of the beam, which was not the case in the piston model. This is

explained by observing the following proportiomalities:

Letting M = Py Wtbz, equétion {(5.65) becomes

Roag ™ Y (pbWtbP»)(pa/ob)(W/tb) = oaca_szP-'a ' (5.67)

The result given in equation (5.67) is similar in form to the results
of the piston model near the critical frequency. In this case, how=-
ever, the dependence of n, on frequency.is quite complex.

A comparison of the radiation efficiency (c) above the critical

frequency 1s shown in Figure 5.21 for the exact method of (14] and the



Figure 5.20 Radiation Loss Factor Versus Vrequency

for Different Board Widths
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elementary plston model. Tﬁe curves are plotted for an eight inch
wide, one inch thick, oak board having a critical frequency of about
700 Hz. The two curves are in excellent agreement above the critical
frequency., The radiation efficiency (o) used in Figure 5.21 was de-
fined previously as

o==R__./(pct) , (5,68)

rad

where A 1s the total radilating area.

5.5 Theoretical Trends and Compariscns
It is of interest to examine the radiation characteristics of
ﬁeams of different widths, TFor comparison purposes, beams of two and
elght inch widths will belconsidered, Only the frequencies above .and
near the ecritical frequency will be considered, since the lower fre-
quencies do not contribute appreciably to the total radiated power. To
definé a specific ecritical frequency, a one inch thick, red oak beam
is considered which corresponds to a critical frequency of about 700

Hz. At the critical frequency the values of KW for the two heams are

[

]
KW(W=8 ) = wac W/ca 2,60

(5.69)

[H

"
KW(W=2 ) = 21rfc W/ca 0.65 »

91



The case of an unbaffled beam will be considered. From Table 5.1, the.

radiation resistances above the critical frequency are

1]
Rrad(W=8 ) = 2ch£en(Kw)
1 ' (5.70)
Rrad(w=2 Yy = 2ch£G°(KW) s
and
(1]
Rrad(w=8 ) = 2peWi for KW»4
(5.71)
_ 111 . 2
Rfad(W—z ) = peW KL for 1l<KW<4
Near the critical frequenﬁy the radiation resistances are
[}
Rrad(w=8 ) = chEGo(KW)
(5.72)
n .
Rrad(W=2 )y = chEBO(KW) s
and
" 1 2
= = - £
R:'-ad(w 8) =73 pckKW ,
. : ‘ (5.73)
Rrad(w=2 ? = 3pcWL(KW) ™ .

The values of BO(KW), based on Figure 5,15, are given in Table 5.2,

i
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Forming the parameter Rrad/¢’ where ¢ = 2pc£KWotbo, the radiation

resistance expressions become

WBO(KW)/(KHOtbO) for f>fc

Rrad/¢ = (5.74)
weo(Kw)/(ngocbo) for £=£_
and the approximate forms are.
W/(WoKtbo) for f>fc |
n
Rrad/¢(W§8 ) = (5.75)
1,2 . -
z(W /(Wotbo)) for f£=f
and
1,..2 :
ZWT/ (W e, D) for f>£
2 L (5.76)
0 for f=f
c
These expressions may be conveniently compared with the results
obtained in {14]. Recalling equation (5.65)
Rrad = mMna = mpbWtblna . (5.77)
thus
R g/ = wp (WH (e /e )
(5.78)

R ACURICAICV AL I
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where the value of N is found from Figure 5.20. Since Figure 5.20 is
based on pa/pb = 1,55 x 10_3,which corresponds approximately to red oak,

the radiation parameter becomes
R ,q/¢ = 3240, (WM (e /ey ), | (5.79)

The valugs obtained for N, from Figure 5.20 are given in Table 5.3 and
the values of the quantity Rrad/¢ for Wo =-t, = 1l inch are given in
Table 5.4, and plotted in Figure 5.22. From Figure 5.22 it is observed
that the theoretical trend of [14] which predicts that the major con-
tribution to the radiation pafameter for the wider board is concentrated
dn the vicinity of the critical frequency, while that for the narrower
board is spread out, is also apparent from the simple piston model,

The piston model is noted to exhibit the theoretical txends while

allowing quite simple computations of the radiated sound power.

5.5.1 A Comparison of the Radiation Characteristics of Wide and

Narrow Beams

The radiated sound power for two beams of four and eight inch
widths‘is of interest., The beams are excited across their width at a
blade passage frequency of 240-Hz; The beams are assumed to be of the .
same material and the same length (five feet). The mean-square veloc-—
ity = length product (<§2>£) 1s assumed to be constant and the velocity
magnitude and frequency spectra are assumed to be the same for éach

beam. The beams are assumed to radiate from an infinite baffle.



Table 5.2 Radiation Efficiency Parameter for Different Values of KW

for Each Beam

95

£ (xW) 8, (KW) - (kW) 0., (M)
(Hz) (w=8") (Wa8") (wa2") (w=2")
500 1.80 0.40 0.46 0
700 2.62 0.60 0.66 0,02
1000 3.75 1.00 0.93 0.08
2000 7.50 0.95 1.88 0.40
3000 11,00 1.00 2,80 0.75
4000 14.00 1.00 3.70 1,00

Table 5.3 Acoustic Loss Factor for Different Frequencies.

2,70x10"

a Na
(Hz) (Wa2™) (Wa8™)

-3 | -3

1000 1.00x10 9.00x10
| -3 - -3

2000 2.00x10 4. 5010
-3 -3

3000 3.00x10 3,50%10
' 4000 3 2.70x10™3
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Table 5.4 Comparison of Radiation Parameters for Different Mathematical

Models
Freque . Exact Methdd Piston Model Piston Model
g o[ (Exact) (Approximate)
Rrad/ {2p cKR,Woto) Rrad/ (2p cmwoto) Rrad/ (2p cKlwoto)
W=2" - y=8" We2"  y=g" W=2"  y=g”
500 0 0 0 0 ] 0
700 0 0 0.13 7.30 2,00 7.00
1000 0.65 23,40 0.34 17.00 2,00 15.20
2000 1.30 11.60 0,85 8,10 2.00 9.00
3000 1.93 9.00 1.07 5.70 2.00 6.00

4000 1.74 7,00 1.10 4.30 . 2.00. 4.00.




Rrad

METHOD OF [i4]

————— PISTON MODEL
(EXACT)

— — PISTON MODEL
(APPROXIMATE)

Figure 5.22 Radiation Parameter Versus Critical

Frequency Ratio for the Pilston Models

and the Model of [14!
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Equation (5.13) gave the radiated sound power for this case as

Pa = R G2

rag T = (Rradlz)(ui?z:»)‘ , (5.80)

The values of the radiation resistance for the three frequency ranges

are given in.Table 5.1 for the baffled beam as

chﬁeo(KW) for f>fc

_ )1 - ‘
R.4=947% pcwzeo(Kw) for f—fc (5.81)

2
pcW GO(KW) for f<fc

for the square piston model based on beam width.

Defining the radiation efficiency as
g = Rradlfpczw) R (5.82)
the scund power may be written as.
=2
Pa = o(pcW) <RV™> ., _ (5.83)

Table 5.5 is cobtained from Figure 5.15 for a blade passage fre-
quency of 240 Hz and harmonic frequencies for the two beams under
conslderation, A plot of the radiation efficiency {o) versus frequency

for the eight and four Inch wide beams 1s shown in Figure 5,23,

i



Table 5.5 Radiation Efficiency for Different XKW Values of Each Beam

6

9

g

£OK (A () () (8 (Hd®)
240 0.11  0.88 0.44 0 o 0.02 0
480 6.22 1.76 0.88 0.30 0.09 0,08 0
720 0.33  2.64 1.32 0.67 0.15 0.34 0,08
960 0.44  3.52 1.76 0.92 0.35 0.92 0.35
1200  0.55  4.40 2,20 1,10  0.50 1,10 0.50
1440 0,66 5.30 2,64 1.12 0.65 1.12 0.65
1680 0.77  6.20 3.10 1,05 0.80 1.05 0.80
1920 0.88  7.00 3.50 1,00 0.92 1.00 0.92
2160  0.99 »7.00 3.96 1.00 1.05 1,00 1.05
2400 1.10 - 4.40 1,00 1.10 1,00 1.10
2640 1.21 - 4.85 1.00 1.12 1,00 1.12
2880 1.32 - 5,30 1.00 1.12 1.00 1.12
3120 1.43 - 5.65 1.00 1.10 1.00 1.10
3360  1.54 - 6.20 1.00 1.05 1.00 1.05
3600 ° 1.65 - 6.60 1,00 1.00 1.00 1,00
3840 1.76 - 7.00  1.00 1,000  1.00  1.00
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It has been observed experimentally that the force-frequency
characteristics of the input force (F) and the frequency response
characteristics of typical boards (Hn) are such that the acceleration
response of the board (<Ez>) is essentially constant over a wide fre-

quency range.  These quantities are in general related by

[

S, = 5, law|? (5.84)

vhere

Sf(w) = input power spectral density = F{w)/T,

cutput power spectral density = Y{w)/T.

Sy(w)

The quantities F(w) and Y(h) are the Fourier transforms of the input
function F(t) and the response function y(t}, respectively. In terms
of the radiation resistance, the power expression for a constant

acceleration - frequency spectrum is

=2 -2, 2 _
Pa = Rrad V> = Rrad <a >fuw” ‘ (5.85)
since for single frequency components.
<§2> = <Ez>/w2 . {5.86)

Thus, for constant acceleration resporse, the mean-square velocity
- i '

decreases with frequency as 1/m2r Figure 5.24 shows the mean-square

|
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velocity frequency response under this assumption, plotted against . a
dimensicnless frequency parameter f/fo. It 1s convenient to take fo
as the fundamental blade passage frequency. Noting that Vo =~ao/w,

the velocity ratio can be written as

2 2 - 2
WIS = 1wl ) = 1/CEE )0, (5.87)
where V.=-a /uw = 2nf ,
o e o o
Recalling the expression for radiated power
3

=2 s2 =2 =2
Pa = Rra V> = (Rrad/a) <V /VD> (<V0>£)

d

and using equation (5.83), gives

Pa = pcWo <ﬁ2/?§> (<V§>£) . (5.88)
The variables in equation (5.88) are the product a<§?3i> and the beam
width (W) since the quantity <V§>£ 1s assumed to be constant, Com—
bining the radiation resistance curves of Figure 5.23 and using Figure.
5.24 for the velocity variatioﬁ, results in Figure 5.26, which is a
plot of c<V2/Vi>(W/W°) vetrsus ﬁhe frequency ratic f/fo’ The frequency
variation in the velocity term of equation (5.88) is accounted for by
the factor (<VZ/V§>) and the vélocity amplitude, which depends on beam
length, is taken into account by the term <§§>£ shown in Figure 5.25,
The frequencies that contribute to the overall power. output are

noted from Figure 5.26 to be; (a) the fourth harmonic (f/f°=4) for the

|
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eight inch beam, and (b) the fourth, fifth, and sixth harmonics
(f/fo = 4, 5, 6) for the four inch wide beam,
The discrete frequency.sound power levels (Lw) can be obtained by

defining a suitable reference power (Po) and performing the operation

10 loglO(Pa/Po), thus

L, (E/£ )

10 log (Pa/Po)

1

10 log) [(o<T*/T5W) (pe) (2¥25)/R ]
or

~ =2 o2 =2
LW(f/fo) = 10 loglo[c<V /VO>W] + 10 loglo[2<vo>]
(5.89)
+ 10 loglo[pc/Po] 5

where the first term 1s obtained from Figure 5.26 and the second term

is specified experimentally or calculated from energy considerations.
When the value of <Vz>, the mean-square velocity, is known as a

function of frequency fo; the board under consideration, equatién (5.89)

can be written in the more useful form

LyCE/£)) = 10 log, lo] + 10 log, (W]

(5.90)
=2
+ 10 10310[2]-+ 10 loglo[<v >] + 10 10810[pc/Po] s
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The radiation efficiency (o) is plotted versus frequency in Figure 5.23
for the beam widths of interest.

Equation (5.89) can be simplified by making an approximation based
on the frequencies at which theée beams radiate.significant power., The
fourth and fifth harmonics (f/fO = 4, 5) correspond to frequencies of
960 and 1200 Hz which are near the critical frequency for typical beam
thicknesses (see Figure 5.3). The approximation from Table 5.1 for
the radi;tion resistance of a baffled beam for 1<KW<4 is

2

1
Rrad = pcWig = Z-pcKW L (5.91)

.so that
1

Substituting equation (5.92) into equation (5.89) gives

1 2 =2,=2
Lw(m) = 10 loglo[z-KW <V /VO>]

+ 10 1oglo[z<v§>] (5.93)
+ 10 1ogm[pt:/P°] .

Using the relationship K = w/Ca = 21rf/C.a gives

2 =2 =2
L (f) = 10 log,.[W"] + 10 log, . [<V°/V“>f]
Ly 10 210 o (5.98)

. | _2
+ 10 loglo[wpa/(?Po)]w 10 10g10[£<VO>] »
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From equation (5.87).(V/V°)2 = lf(f/fo)z,
so that

AL A TN | (5.95)
and

L, (£) = 10 1og10[w2] + 20 log o[£ ] + 10 log,olme /(2P )]

+ 10 log) o (2<¥2>] - 10 log [£] - (5.96)

The unbaffled beam at frequencies near the critical frequency
differs from the baffled case (equation (5.88))by a factor of two.
The sound power level, under identical conditions, would be three
decibels greater for the unbaffled beam.

In the immediate vicinity of the critical frequency, where the
sound radiation is concentrated, the last four terms of equation (5.96)
are the same for either beam and represent an additive constant. In

this case the sound power output proportionality is
2
Lw(f-fc) "~ 10 loglo[w ] =20 1oglO[W] . (5.97)

The power produced 1s observed to depend primarily on beam width and

increases six decibels for each doubling of beam width. The assumptions

made in reaching this conclusion are ret for most planing operations and
. i
i
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the six decibel 1increase in radiated power has been observed experi-

mentally for & wide variety of operations..

5.5.2 A Numerical Calculation of Radiated Sound Power

To compute the actual value of the radiated sound power for each

beam, equation (5.89) is utilized, i.e.;

. -2 =2 =2
%W(f/fo) = 10 loglo[c<v /VO>W] + 10 loglOER<V°>]

+10 log  loc/P ] . (5.98)

Using Figure 5,26 for the.values of the first term in equation (5,98)
gives the data shown in fable 5.6, Using a reference power of 10”13
watts, the quantity 10 loglo[pc/Po] is approximately 128 decibels under
standard atmospheric conditioms.

The product of board length and mean-square velocity in equation
(5.98) is, in general, unknown. The velocity response of the board
can be calculated, theoretically, by the methods of Chapter 4 ar
approximated using the energy considerations of Chapter 5. 1In either
case the magnitude of the excitation force must be specified. This
magnitude is difficult to ascertain either amalytically or eﬁperimen—
tally, since it is governed by the particular energy transfer mechanism
between the cutterhead and the board. To facilitate the comparison of
the theoretical and experimental results, a rcugh approximation of the

quantity <V§>2 based on experimental data is utilized. For frequencies

near the critical frequency, experiments indicate that typical values
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are of the order of unity. Using 2<V§> = 1, equation (5.98) becomes
L. (£/£ ) = 10 log [c<72/V2>W] + 128 dB , (5.99)
W ) 10 o °
The scund power output under this assumption for the eight and four
inch board widths is presented in Table 5.7.
For a semireverberant environment, typical of most industrial

plants, {11] relates the average sound pressure level at a specific

radius (r) to the sound power level by
Ly=I, -1 Log, o (L/Sy+4/R) = .5 dB (5.100)
where

= gound power level in decilbels (re 10-13 watts),

(]
0

sound pressure level averaged on the surface of a
hemisphere surrounding the source, |

5., = surface area of the test hemisphere (Zﬂrz), where r
is the radius of the hemisphere in feet,

R = the room constant.
The expression for R is given by [11l] as

R = EArfcl-E) ,

1

where a-1is defined as the ratio of ene.gy absorbed by the walls to the

|
|
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Table 5.6 Radiation Efficiency Parameter for Several Values of the

Fundamental Frequency Ratie:

£/ U<V2/§§>W 10 loglolc<§2/V§>W] (dB)
° (w=8") (WaB"™) (w=8'") - (W=4'™)
3 0.24 0.07 ~6.,25 -11.60
4 - ' 0.50 0.08 -3,00 -11,00
5 0.32 OIOB "5!00 "11.00
6 0023 0&07 -6.3}0 _11n60
Table 5.7 8Sound Power Level for Each Beam
£/£, L, (dB) L, (dB)
(W=8") (W=d")
3 121.75 116.40
4 125.00 117.00
5 123.00 117.00

6 121,60

116.40
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energy incident on the walls and Ar is the total area of the reflecting
surfaces. For typical rooms (& = 0.2) R ranges from 700 to 1000 ftz,
so that 4/R = 0.001 and l/SH = 0,006 at a radius of five feet from the
machine. Thus 4/R + 1/SH = 0.007 so that 10 log10(0.007) = - 22

decibels. Equation (5.100) relating the sound power level and the

sound pressure level for a radius of five feet, becomes
- ]
L, = Lp(r=S })+ 2248 ,
or
- ]
Lp(r=5 ) = LW ~ 22 43 ,
The sound power levels and sound pressure levels at a radius of five

feet from the machine for the two board widths are given in Table 5.8

along with the overall levels.
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Table 5.8 Sound Power and Sound Pressure Levels for Each Beam

I.w L L, T
f/f 1] pn ) 4] pll
o (We8™) (W=8") . (W=d"y (Wed')
3 122.0 100.0 116.5 94,5
4 125.0 103.0 117.0 95.0
5 _ 123.0 101.0 117.0 95,0
3 121.5 99,5 116.5 94,5
Overall - o - =
(aB) L, = 129 Lp 107 L, = 123 Lp 101

Levels
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6. EXPERIMENTAL INVESTIGATION OF WOOD PLANER NOISE

6.1 Introduction

The experimental program was directed primarily toward the noilse
produced by a single head surfécer, aithough many of the conclusions
reached carry directly over to the more compléx cases of double sur-.
facers, moulders, and heavy duty planers. The experimental study is
divided into the following areas:

(1) Identification of sources of planer noise.

(2) 1Identification of the factors influencing noise.

(3) Techniques of n;iSe reduction.

(4) Practical noise control study areas,

The practical noise coﬁtrol study was concentrated in three major
areas:

(1) Mechanical redesign of cutterheads to feduce the energy
input .into the board and thus the energy radiated as sound,

(2) Treatment of vibrating surfaces including techniques of
damping, absorbing, and reflecting vibratory energy.

(3) Sound absorption techniques including the design of acoustic

enclosures.

6.2 Reiteration of the Sources of Planer.Noise
The noise sources which are considered to contribute to the overall
planer noise problem were listed in Chapter 3 and are repeated here for
convenience.
(1) Board radiation due to the Yibration of the board itself.

{2) Anvil radiation causedlby s:ructural vibration,
i
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(3) Aerodynamic noise produced by the rotation of the cutterhead
near stationary surfaces.

(4) Noise produced by the electric motors used to power. the
cutterheads and feed works,

(5) Dust collection system noise.

(6) Noise produced by the vibration of machine surfaces such as
feed beds and housings.

(7) DMNoise produced by the drive train system,

The contribution of each of these sources to the §verall planer.
noise has been studied experimentally and will be discussed in Section
6.4. In order‘to study the effects of different sources and parameters
-on planer noise, a series of experiments were conducted using a cabinet
type single surfacer installed in a suitable laboratory space. The

data acquisition and analysis equipment used is described in the

following section.

6.3 Data Acquisition and.Analysis

The semireverberant laboratory space where the experimental
program was conducted is shown in Figure 6.l1. The location of the
planer‘in the room is shown along with microphone positions referenced
to the center of the machine cutterhead. The x-y-z coordinate positionms
correspond roughly to the recommended éoints on the surface of g hypo-
thetical ﬁemiSphere, used to compute the radiated sound power. The
substitution method was used to calibrate the room in accord with [11].
Reverberation time measurements were in good apreement with the room

constant obtained using the reference’ sound source method for broadband
. i ‘ '

noise,
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Sound pressure level and board acceleration measurements were
taken using tﬁe experimental arrangement shown in Filgure 6.2, The two
channel tape recorder was utilized since the simultanecus measurement
of sound and vibration was necessary for correlation studies. The data
analysis apparatus also shown consisted essentially of a one-third
octave real time analyzer, which aided in the analysis of short dura-
tion signals, and a one percent narrow band analyzer, which was. neces-
sary in the detection of blade passage frequencies and harmonics. Tape
loop capabilities were necessary in conjunction with the narrow band
analysils of short duration signals.

An experimental setup was also devised to simulate planer noise by
.mechanically exciting boards. The arrangement consisted essentially of
a square wave signal generator, which simulated the pericdic impact of
cutterhead knives, an amplification unit, and an electro-mechanical
shaker. Correlation studlies were easily achieved using this arrange-
ment. The apparatus shown in Figure 6.2 was also used in connection
with tire-plate suppression system studies, discussed later in this

chapter,

6.4 Factors Influencing Plansr Noise
Although several of the factors discussed here avre interrelated
to some degree, the individual effect on the total sound produced can
essentially be considered independently. For example, if by tightenw
ing the pressure bar a noilse reduﬁtion of five decibels is obtained
and by using sharp knives another five decibel reduction is expected,
then a planer operating with a tight Aressure bar and sharp knives.

- E
would be expected to produce ten declbels less noise than its

|
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counterpart with a loose bar and dull knives., The amount of reduction
depends of course on the operating levels, hence the example cited
above would be valid only for one particular machine and operating

condition.

6.4.1 Board Width

Since board vibration is the major source of noise, board width
serves as a measure of the energy input into the board, and thus is an
indicator of the resulting sound produced. Since the energy delivered
to the board per unit width is constant, the board can be considered to
radiate like a series of unit sound radiators, with each unit width
radiating a certain amount of the energy that is put inte the board.
‘Thus, the total emergy input to a wide board is greater than that for
a narrow boafd since more work must be done on the wider board. The
power input to the board is a function of the velocity and force of the
cutting knives. The power output in the form of sound energy 1is
related to the surface area and transverse velocity of the board. For
the case of board vibration, the source strength is related to the
board surface area and the board velocity, where the velocity is a
space-éime average over the surface of the board,

Based on this physical reasoping, a series of tests ﬁere conducted
to ascertain the variation in radiated sound power with board width,
This was accomplished by measuring the sound pressure levels at four
locations around the machine for various board widths holding other
parameters constant. Using the methods [11), sound power levels were

computed from the average sound pressire levels. Figure 6.3 shows

f

|
!
!
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the results of these measurements and indicates a six decibel increase

in sound power for each doubling of board width,

6.4.2 Board Length

The length of the board is not so simply related to the resulting
sound fleld since the energy transmitted to fhe board from the cutter-
head tends to be distributed along the board longitudinally. As a
result of this spreading out of the vibrational energy, the total sound.
emission is not dependent on the length of the board, since changes in
surface velocity due to variations in length are counterbalanced by a
change in the surface area of the board (length times width)., Noige
level measurements for various length boards, shown in Figure 6.4,
indicate that the length of the board, alone, does not influence the
sound levels produced. The acceleration levels, however, are signifi-
cantly increased as board length is decreased, The product of board
surface area and acceleration remains essentially counstant. The rela-
tionship between sound pressure level (noise level), acceleration level
(g level), and board length for a double surfacer and the single sur-
facer studied 1s shown in Figures 6.5 and 6.6. These figures show that
although the acceleration levels are lower for the longer boards, the
product of acceleration level and board length remains constant. The
decrease in acceleration level of approximately three decibels per
doubling of length is shown in Figure 6.7 for both the single and

double surfacer.
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6.4.3 Board Species

The species of wood being cut has a marked effect on the frequency
range of board response. The board responds to some extent at all
forced frequencies and harmonics; however, the frequencies of maximum
response, corresponding to strong board resonances, are significantly
affected by the type of wood being planed. The natural frequenciles
for a beam of rectangular'cross section can be expressed by

w = g(n) (EIgc/pbﬂ) /2

where the coefficient B depends on the lepngth, boundary conditions,
-and mode of vibration (n).

Here,

w = natural frequency,

E = modulus of elasticity,
Py = density,

R = cross sectional area,

I = moment of inertia.

The material properties in the equation above are the modulus (E)
and the density (pb). Examining the ratio of E/p for several board
spe;ies provides a means of determining the frequency range of maximum
board response. Typlcal values fof the .ratio of E/pb, normalized on

red oak are given in Table 6.1. ’
' i

b
- !
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Table 6.1 Ratio of Ekl for Different Wood Species

—"
Material Normalized Ek&
Red Oak ' 1.0
Pine (short leaf) 1.2
Cedar 0.6

*Values taken from the Handbook of Chemistry and Physics for dry wood,

The values shown above indicate that pine should have a frequency
.range of maximum response that is higher than red oak, while cedar
would respond better in the frequency range corresponding to the lower
harmonics of the blade passage frequency. The ratio of I/0Q is propor-
tional to be board thickness squared and also affects the frequencies
at which maximum response can be expected. The effect of board thick-
ness on the sound produced is discussed elsewhere in this section.

An experimental analysis of the sound and vibration levels for
pine and ocak beoards indicates g difference in the frequency content
of the spectra, The cne-third octave plot of Figure 5.8 shows that
the sound energy produced by the pine boards is concentrated at higher,
frequencies than that corresponding to oak boards, The modulus of .
elasticity and density, as well as variations in internal damping,
stiffness, and energyrrequired to remove a chip, are primarily respon-
sible for these differences., The moisture content of the wood could
also possibly affect the degree of in‘ernal damping and thus the sound
produced, ' 1

|

i
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6.4,4 Board Thickness

Although the thickness of the board does not appreciably affect
the overall sound pressure level produced, the board thickness does
affect the natural frequencies of board vibration. Since the board
will respond well only when a natural frequency is close to a forced
frequency or harmonic, the effect of board thickness is much the same
as that of board species, i.e. it changes the frequency range 6f maxi-
mum board respomnse.

Measurements made on six, eight, and ten inch wide boards having
original thickness ranging from 3/8 to 1 and 3/8 inches, indicate no
noticeable trend in the overall noise levels produced., The variation
-in noise level with different board thickness, shown in Figure 6,9, 18

well within experimental accuracy.

6.4.5 Depth of Cut

The depth of cut does not noticeably affect the vibration or sound
spectra for depths ranging from 1/16 to 1/8 of an inch. This result
would be expected to apply to any planing operation provided constant
blade contact and shooth cutting are maintained. As cut depths are
greatlf increased or decreased, extraneous factors associated with non—
uniform cutting tend to make noise analyses impractical. For an ex-
tremely shallow cut, surface irregularities, as well as unequal knife

tip radii, result in intermittent cutting and an unsteady sound field.

6.4,6 Sharpness of Knives
Noise levels produced by the planer, for similar cutting opera-

tions,- increase as the knives become 'ull, since the force required to

|

|
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remove chips increases and thus the force transmitted to the board is
increased. This results in an increased energy input into the board,
part of whiéh may be dissipated as sound.

Detailed experimental results reélating the variation in noise
level to knife sharpness are not available. However, measurements
taken over long periods of time have indicated a substantial increase

in noise levels as the knives become dull.

6.4,7 Pressure Bar Tightness

The firmness with which the board is held agalnst the anvil sﬁruc-
ture by the pressure bar greatly affects the magnitude of board vibra-
tion and thus the noise produced. The firm contact of the pressure
‘bar on the surface of the board reduces the magnitude of the board
response to the periodic impact of the knives. The sound pressure
level decrease associated with a tight pressure bar is directly cofre-
lated to the corresponding reductlion in board acceleration level. The
effect of pressure bar tightness on board vibration and the resulting

noise level is shown in Figure 6.10.

6.4.8 Machine Feed Speed

The input feed speed does not appreciably affect the noise levels
produced for speeds ranging up to several hundred feet per minute, As
the feed speed is appreciably increased, however, the sound and vibra-
tion signals become transient in nature and are difficult to measure

accurately.



108

o
H

o
S

SOUNC PRESSURE LEVEL (dB)-

AN

)

"TIGHT" PRESSURE BAR

"LOOSE" PRESSURE BAR

AN

s

SOUND PRESSURE

Figure 6.10

ACCELERATION  SOUND PRESSURE ACCELERATION

Sound Pressure and Acceleration Levels for Operation
with the Pressure Bar in the 'Tight'" and "Loose"

Positions

s 3 8 &8 38 8 3
ACCELERATION (g)

¢ET



133

6.4,9 Chipbreaker Mechanism

The chipbreaker mechanism, in addition to its normal function, is
observed to act to some degree as a vibration suppressor. The chip~-
breaker reduces the magnitude of vibrations propagated along the board,
and thereby reduces the noise produced by that portion of the board.
The mechanism governing this phenomena 1s believed to be a combination
of the chipbreaker acting as (1) a barrier of block of weight added to
the boaré reducing the propagated vibration and, (2) a vibration iso-
lator or absorber at certain 'tuned" frequencies, It has also been
suggested that the physical effect of therchipbreaking on the mechanism
of chip removal contributes to the reduced noise levels, The effec-
.tiveness of the chipbreaker as a nolse suppressor depends in part on
on the pressure exerted on the board, the stiffness of the springs used
in the chipbreaker, and the nature of the contact made with the board.

The effect of the chipbreaker on the planer noise level has been
investigated experimentally by operating the planer with the chip-
breaker completely removed. The noise levels measured, shown in Figure
6.11, increase by approximately ten decibels when compared to a similar
operation with the chipbreaker in place.

The chipbreaker, unlike the board, responds well only at frequen-
cies centered around the 500 and 6300-Hz bands.The spectrum of Figure 6,12
shows that 480 Hz is a harmonic of the forcing frequenzy, while the
6000 Hz component is probably a purely resonant type response, 'The
isolated frequencies of chipbreaker response indicate that a tuned
vibration absorber" effect may be obtained by adjusting the chipbreaker

I
spring stiffness to respond well at certain frequenciea. The mechanism

|
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involved in the sound attenuation obtained using the chipbreaker 1is
being studied experimentally in order to optimize chipbreaker design
and devise other apparatus to attenuate the longitudinal propagation
of vibration along the board,

The chipbreaker has also been utilized to indicate the nature of
the force imparted to the board by the knives. Since the chipbreaker
responds well at only a few frequencies, the accelerometer readings
taken on the surface of the chipbreaker can be used to indicate the
duration and frequency of the impulse created upon blade impact. An
oscilloscope trace of the chipbreaker acceleration response as a
function of time is shown in Figure 6,13. The high frequency oscilla-
-tion of the signal can be directly related to the observed resonant
response of the chipbreaker at 6000 Hz in Figure 6,12, By counting the
number of cycles completed per centimeter in Figure $.13, the resonant
frequency of the chipbreaker can be calculated. The pulse duration
and spacing can also be obtained from the figure for a given oscilloe-
scope sensitivity. The natural frequency of the chipbreaker is found

from:

3 cycles i

£ = = 6 L5258 - 6000 Hz
5 msec msec
' cm

6.4.10 Cutterhead Design

The noise produced by the cutteraead and knives can.be grouped

into two categories; (1) aerodyqamic 10ise and (2) noise produced by
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Figure 6.13 Oscilloscope Trace of Chipbreaker Acceleration

Response Versus Time
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forced vibration of the board. The aerodynamic noise is predominant
when the machine is idlimg, but is usually well below the noise pro-

duced due to board vibration when material is being planed.

Aerodynamic Noise

The predominant source of noise when the machine is idling is
aercdynamic noise, The.mechanism of noise generation is the presence
of pressure fluxuations when air is disturbed by the knives in the
vicinity of statiocnary surfaces. Several pure-tone frequencies are
usually produced and can be easily correlated with the blade passage
frequencies and their harmonics. Usually only the first three har-
monics are of importance in the zercodynamic noise. The expected fre-
quencies are integral multiples of the blade passage frequency defined

by
BPF = blade passage frequency = (number of knives)(RPM)/60.

The presence of staticnary surfaces, such as feed beds and cavities
can affect both the frequency and overall level of the radiated noise.
The exact proportion by which the noise radiated by planers is affected
by surfaces and cavities in the vicinity of the cutterhead has not been
established. The idle noise spectras for cutterheads with four and six
knives, shown in Figure 6,14, indicate the predominance of the frequency

components assocliated with the blade passage frequency and harmonics,
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Board Vibration Noise

The force imparted to the board by the knives occurs also at the
blade passage frequency. For straight knives this force is transmitted
to the board periodically and the resulting board vibration occurs
primarily at the blade passage frequency and its harmonics which are
near natural frequencies of the board. Since the board is supported by
the feed rollers and moves across these rollers, there are many natural
frequencies associated with the beard, For this reason the board
responds well at the blade passage frequency and each harmonic frequency
of the blade passage frequency.

A narrow band analysis of typical sound pressure level and board
vibration, shown in Figures 6.15 and 6.16, indicates the presence of
the expected frequency components. As indicated, there is excellent

correlation between the board acceleration and the sound spectra,

6.4.11 Dust Hoods

The dust hood, in itself, is not a primary source of nolse for the
planer. However, if not proper1§ isclated from the machine, vibrations
can be transmitted to the hood and cause it to vibrate at or near one
of its natural frequencies and thus produce sound, The construction of
the standard hood does little to contain the noise produced directly
ovaer the cutterhead aﬁd in some cases, cavity resonances may contribute
to the overall noise problem.

The dust hood does, however, radiate energy when struck by chips
being removed from the wood. This radiation is usually of little

importance in the total noise problem,
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Dust hoods could be designed to provide noise reduction by includ-
ing absorption material in the construction of the hood. It is essen-
tial to point out that the hood must not be connected rigidly in any

mannher to the main body of’ the machine,

6.4.12 Electriec Motors

The three basic sources of electric motor neise are given in [12]
as; windage, electromagnetic field, and mechanical parts. High speed
electric motors often contribute to the overall machine noise problem
and, since windage noise varies approximately with the fifth power of
peripheral velocity, can be a major noise source in high-speed machines.
Windage noise results from (1) the fundamental fan blade frequency and
other fundamental frequencies of rotating parts, and (2) broadband
neise.

Broadband windage noise is characteristic of rotating electric
machinery and is generally in the frequency range of 150 te 1200 Hz.
it is produced by air turbulence as the machine fans clrculate air
through the complex path of rotor, air gap, coll end turns, stator,

and enclosure.

6,4,13 Drive Train Systems

The noise produced by the drive train system associated with the
machine feed works does not contribute appreciably to the overall noise
problem. This source is usually less than idling or‘aerodynamic nolse
provided the machine is in good mechanical condition. The major com-
poﬁents.of the vibration spectra associated with the operation of the

feed works are low frequency with a small amplitude, The feed roll
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system may directly affect the noise produced by board radiation
depending on the amount of vibratory energy that is absorbed or re-

flected by the feed rolls.

6.4.,14 Machine Component Vibration

buring machine operation, vibration due to blade impact is trans-
mitted through the machine as follows:

(1) Direct transmissicn through the board into the anvil struc-
ture and consequently throughout the machine.

(2) Vibration transmitted directly from the board into machine
components in contact with the board.

(3) Vibration transmitted back through the cutterhead and
throughout the machine.

To determine the manner in which various parts of the machine
respond to this transmitted vibration, an acceleration probe was con-
ducted. The accelerometer locations and maximum rms g levels recorded
are given along with an evaluation of the possible noise produced by

each component.

Anvil Structure (20g)

The portion of the energy from the cutterhead that is transmitted
directly through the board intc the anvil is dissipated in the anvil
or transmitted on to other components of the machine. The mechanisms
of energy dissipation for the anvil are much the same as for the board,
being internal damping and radiation. Vibration spectra of accelera-
tion on the surface of the anvil correlate well with near field sound

pressure level spectra for the area directly beneath the anvil. This
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region 1s one of high sound intensity, resulting from the radiation of
sound by both the board and the anvil, The amount of anvil radiation
and frequency characteristics are dependent upon the geometry of the
anvil as well as the amount of energy transmitted from the board into

the anvil,

Feed Beds (2g)
Measurements taken on the surface of the feed beds indicate that
the beds respond only slightly to the forcing frequency components and

thus do not contribute significantly to the sound emitted.

Input Feed Roller Housing {(3g)
The front housing exhibits maximum response at the lower forced
harmonic frequencies (240 and 480 Hz). The structure could possibly
radiate sound at the lower frequencies and should be iscolated from

vibration or structurally damped.

Output Feed Roller Housing (2g)
At the frequencies of 1200 Hz and 1900 Hz the housing response is
maximum, Although contribution to the total sound emitted is minimal,

isolation or damping could be easily effected.

Chipbreaker Mechanism (17g)
The chipbreaker responded well only at the 480 Hz and 6000 Hz
frequencies. The limited area of the chipbreaker precludes sound
radiation at 480 Hz, however at 6000 Hz radiation is possible. The

chipbreaker, as discussed earlier, acts as a nolse suppression device.



Pressure Bar (2g)

The pressure bar is quite massive with respect to its radiating
area and responds at low g levels. The acceleration response is maxi-
mum at 240 Hz. Theoretically, the pressure bar maintains only line
contact with the board. By increasing the area of contact with the

board, the pressure bar could become effective in noise reduction.

Planer Side Housings (lg)
The right side housing (motor side) exhibits little acceleration
response, the maximum being a probable resonance well above 10,000 Hz.
The left housing responds well at 240 and 1200 Hz possibly radiating

minimal energy.

6.5 Techniques of ¥oise Reduction
Possible means of noise reduction for the sources identified in
Section 6.2 are presented, Special emphasis is placed on the board

and anvil structure since these are major noise sources.

6.5,1 Reduction of Noise Produced as a Result of Board Vibration

(1) Physically restrain the board from vibrating. Thils involves
firm contact over the entiré sutrface area of the board.

(2) Cause the board to vibrate_at frequencies above or below the
audible range.

(3) Add structural or viscous damping to the board to reduce the
portion of the energy that is dissipated as sound.

(4) Prevent the longitudinal propagation of vibratory energy
along the board by utilizing vibration suppression devices near the

cutterhead.

146
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(5) Enclose the area around the radiating surfaces of the board
using an acoustic absorption material,
(6) Alter the means by which vibration is induced into the board

by changing the manner in which the cutting knives contact the board.

6.5.2 PReduction of Noise Produced as a Result of Anvil Vibration

(1) Physically restrain or structurally reinforce the anvil with
due regard paild to the natural resonant frequencies of the anvil.

(2) Add structural damping to the anvil and isolate it from other
machine compenents, |

(3) Enclose the vicinity of the anvil using acoustic absorption

materials,

6.5.3 Reduction of Noigse Resulting from Other Sources

(1) Geometrically altaring the cutterhead and (or) nearby sur-.
faces so as to reduce the aerodynamic noise. An acoustic enclosure
could be effective in some cases for both idle and operational noise.

(2) Reduce the noise produced by electric motors by redesign or
the installation of an acoustic encleosure utilizing forced ailr or other
means of cooling.

(3} Structurally damp and isolate feed beds and housings from
other machine components,

(4) Isolate the dust hood from the machine and incorporate the

hood into a partial acoustlc enclosure.

6.6 Noise Control Study Areas
The three most promising techniques of major noise reduction

presented in Section 6.5 from a standpoint of short range solutions.
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are (1) cutterhead redesign, (2) treatment of vibrating surfaces, and
(3) sound absorption techniques. Each of these study areas is dis-
cussed in detail and a description of practical applications to produc-

tion line wood planers is given,

6.6.,1 Cutterhead Redesign

Standard cutterheads consist of a c¢ylinder with straight knives
equally spaced arcound the c¢circumference. When material is planed it is
acted on by a periodic force delivered by the cutterhead and is conse-
quently set into vibration by these periodic blade impacts occurring at
the blade passage frequency. If continuous blade contact with the
board could be maint#ined, the force exerted on the board would no
longer be pericdic and greatly reduced vibration levels would result.
The oscillescope trace of Figure 6.13 indicates the nature of the force
delivered to the board by each blade impact, i.e., the shape, period,
and duration of the impact pulse produced by the knives. The oscillo~
scope trace is complicated by the natural frequency of the chipbreaker
appearing as an oscillation imposed on the signal due to blade impact
alone. The time interval between the individual pulses is governed by

the number of knives and the cutterhead speed. The oscilloscope trace

indicates a pulse spacing of approximately eight centimeters, thus the

msec

time interval between pulses = 8 cm times (.53) or 4.0 msec. The

frequency of the pulses is found by converting from milliseconds to

cycles per second:

1000 mSec
f=——ﬁ= 250 Hz = 240 Hz
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which 1s the expected pulse frequency. The pulse duration can also be

obtained from Figure 6.13 by estimating the width of each pulse:

msec
cm

Pulse duraticn = 2 cm times 0.5 = 1.0 msec

which indicates a 1000 Hz waveform. The resulting pulse 1s seen to
resemble a square wavéférm of one millisecond duration and four milli-
seconds spacing. This information is useful in arriving at the proper
signal to be used in experimental arrangements. The actual force de-
livered to the board is of the form as shown in Figure 6.17. The
applied force is seen to vary with time, resulting in board vibration.

The ideal situation would be the case where the force is applied
to the beard in a constant manner. The time rate of change of the
force would become zero and the beard would no longer undergo steady
state vibration, The appliad force history would then be represented
by Figure 6.18. Two methods by which the present situation as shown in
Figure 6.17 could be changed to conform more closely with the ideal
situation shown in Figure 6,18 are (1) increase the duration of the
shock pulses to effectively smooth out the curve of Figure 6.17, and
(2). increase the frequency at which the pulses in Figure 6.17 occur to
obtain a smoother curve.

These methods may be combined to some degree to obtain a force
history that approximates the Ideal case of Figure 6.18. The frequency
of the pulses is equivalent to the blade passage frequency and may be
increased by increasing the number of knives on the cutterhead or the

cutterhead RPM. The duration of the pulse shown in Filgure 6.17 is
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governed by the time span that each blade is in contact with the board.
For the special ﬁase of a nelical or wound blade, blade contact with
the board and thus the force input would be maintained constant. For
a true helix the force-time history would be that of Figure 6.18 and
the ideal case would be_achieved.

A semi-helical (segmented) cutterhead,shown in Figure 6.19,con-
sisting of several knives wrapped on the cutterhead forming partial
helices, has provided significant noise reduction. This special cut-
terhead provides a means of more constant contact between the knives
and the board. However, the machines tested utilizing the segmented
heads produced sound and vibraticn spectra that indicated the presence
of a blade passage frequency, which was due to the deviation of these
heads from the ideal true helix. The improvement provided by these
heads is evident in both idle (aerodynamic) noise and operating (fofced
board vibration) noise., Noise level reductions in the neighborhood of
ten decibels are possible for machines equipped with the segmented
heads. The effectiveness of a particular segmented head design has
been evaluated experimentally. A comparison of noise spectra between
the four blade semi-helical arrangement and the standard straight knife
cutterhead, shown in Figure 6.20 indicates a reducticn in the frequency
components centered above 500 Hz. A similar reduction in the acceler-
ation spectrum is also observed. The improvement obtained is due
primarily to the deviation from the purely periodic éxcitation,-result-
ing in reduced resonant response of the board.

Although blade impact characteristics are changed somewhat for the

segmented cutterhead, a passage frequency is still evident in the noise
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and vibration spectra. Predominant frequencies for the four blade
segmented arrangement were again 240 times n (n = 1,2,3...), since

blade contact was not maintained constant over the entire width of the
board. The origin of this periocdic excitation is a combination of two
factors, being (1) the mismatch that occurs when the individual segments
are combined to form the cutterhead, representing a deviation from a
true helix; and (2) the "loose" helix angle that is utilized and the

resultant lack of constant contact.

6.,6,2 Treatment of Vibrating Surfaces

The treatment of vibrating surfaces includes techniques for damping,
absorbing, and reflecting vibratory energy. Each of these techniques

have been studidd experimentally.

Structural Damping

Energy dissipation through internal damping of vibrating struc-
tures is an important means of energy removal and has been experimen-
tally investigated by (1) adhering a damping agent directly to the sur~
face of the board and (2) applying a damping wmaterial to the surface
of the feed beds and anvil structure. The addition of a damping
material directly to the surface of the vibrating board was accomplished
by cementing rubber strips onto the face of the board which was not
being planed. The result of providing the board with an alternate
means of energy dissipation was a decrease in the radiated noise levels
of six to ten decibels. The significant reduction in noise level ob-
tained by structurally damping the board indicated the dominance of

board vibration as the mechanism of sound generation, The noise
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reduction obtained as well as the frequency range affected by the
damping is shown in Figure 6.21 which compares the noise reduction ob-
tained for the treated board with the noise produced by an untreated
board. The range of effectiveness of the damping agent (1000 to
3000 Hz) depends upon the thickness and consistency of the rubber damp-
ing material,

The effect of structural damping on board radiation led to experi-
ments designed to determine the effectiveness of a damping layer applied
directly to the anvil and feed beds to accomplish damping of the board.
The addition of damping material to the feed beds and anvil resulted in
only slight noise reductions at the operator position. The lack of
firm contact between the board and the damping agent was primarily re-
sponsible for this liﬁited success., Frictien effects made it impracti-
cal to perform measurements on the treated side using hold-down mecha-
nisms on the board.

Although the damping agent applied to the machine surfaces had
little effect on the sound radiation in the far field, there was a
substantial effect on anvil vibration. Acceleration levels were re-—
duced from 20g for the untreated side to 4g for the treated portiom,
with pronounced reductions at probable anvil resonant frequenciles.

Three damping agents were utilized for damping tests made on the
anvil structure, the most effective and practical being the constrained
layer or sandwich type. This treatment conslsted of.a layer of visco-
elastic polymer covered by a thin sheet of steel mounted on the upper
face of the anvil., Structural damping of the anvil, and possible shear
type damping of the board, was achieved using the constrained layer

damping.
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The bar graph of Figure 6.22 shows the effect of each damping
agent tested on the resulting anvil vibration (g) level. The neoprene
and constrained layer type damping were the most effective, reducing
the level approximately 15g from the untreated level., Theoretically,
damping treatments are effective methods for reducing board and machine
component vibration and the corresponding contribution to the total
noise. Friction, excessive sensitivity to temperature, and wear
éroblems make damping treatments difficult to apply in practice,

The effect of adding constraint mechanisms to physically restrain
the board from moving (vibrating) at the point of application has been
investigated. A constraint, such as a feed roller, may influence board
vibration by:

(1) Acting as a simple line comstraint having no effeet on the
magnitude of the vibration transmitted beyond it. The modes of board
vibration adjust so that a nodal point situates itself at the point of
constraint. A number of coastraints placed along the feed beds
effectively raise the frequency of vibration and thus the frequency
of the sound produced.

(2) Acting as barrier to outward propagating vibration and
effectively decreasing the dynamic board length. To achieve this con-
dition a massive contact with the board is required, applied over a
large area.

(3) Acting as an energy absorber at the point of contact, The
chipbreaker mechanism exhibits this effect to some degree.

The conventional steel input and output feed roller mechanisms

used on planers act primarily as a simple line constraint deseribed in
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paragraph {1). Less conventional feed rollers constructed of rubber
could well exhibit the properties discussed in paragraphs (2) and (3)
and be valuable in dealing with planer noise.

For experimental purposes, a foam filled rubber tire and steel
plate arrangement was designed to perform the previously cited fune-
tions to some degree, i.e., tend to (l)_attenuate outward propagating
vibration by treflecting the vibratory waves, and (2) absorb energy by
virtue of the foam filled rubber tire and thus reduce the energy dis-
sipated as sound. With moderate force exerted, tﬁe tire deflects form-—
ing a tire flatness, which is quite effective in attenuating the spread
of vibratory energy beyond the tire-plate. The tire itself alsc ab-
sorbs considerable vibratory energy. Sound pressure level and acceler-
ation measurements were mads on the portion of the board extending
beyond a particular tire-plate suppressor. An acoustic enclosure was
utilized to reduce the sound eminating from the inner portion of the
board to levels well below the signal of interest. Figure 6.2, dis-
cussad previously, shows the experimental arrangement with the board
being excited by a mechanilical vibrator with a square wave input. The
vibration ingertion loss was detected by accelerometers located on
either side of the tire-plate system. An 18 dB insertion loés was
obtained with moderate loading of the tire and a similar 18 dB reduc-
tion in noise level was observed,

Such a tire-plate system can be easily installea on existing
roughing and cabinet type planers or incorporated into the feed works.
In conjunction with a moderate size acoustical enclosure, a tire-plate

suppression system has reduced noise levels in excess of 15 dBA iIn
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industrial applications. Considerable work remains to be done in this
area, especially concerning the physical aspects of the tire in regard

to energy absorpticen,

6.6.3 Acoustic Enclosures

One means of obtaining substantial noise reduction for the planer
is the installation of a total or partial acoustic enclésure, For most
planing operations the acoustic energy radiated is concentrated between
500 and 5000 Hz. 1In this frequency range, a combination of absorbing
material and a housing of moderate stiffness and mass provides excellent
attenuation when the source is totally enclesed, The planer, however,
must have an area left open for input and output operations. Since
" these "holes" greatly decrease the effectiveness of an enclosure, the
area of the opening must be minimized with respect to the total en-
closed area for maximum enclosure benefit. The adverse effect of the
opening also depends to a large degree on the frequency of the sound
energy being contained and absorbed within the enclosure. A guide to
the effectiveness of an enclosure that can be expected with respect to
opening sizes and acoustical absorbing surface area 1s given by [33]
and is repeated in Table 6.2,

An enclosure composed of several segments was used to evaluate the
maximum noise reduction obtainable for an enclosure having minimal
openings for feed purposes. The relative importance of each section of
the enclosure was obtained by systematically removing and replacing
various sections. Photographs of the enclosure are shown in Figure 6.23,
Since the total length of the enclosure was equal to the length of the

machine, the board length became increasingly important. The amount of
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Table 6.2 Noise Reduction for Acoustically Lined Plywood Enclosures

with Untreated Openings

Noige Reduction (dBA)

Hole Area Fiberglass Treated
{%# of Total Area) Area (%) Plywood Thickness

1/2" 3,4" 1”

1% 25% ' 13.0  18.0 20,0
50% 16.0 20.0 23,0

75% 18.0 23.0 25,0

100% 19.5 24.0 27.0

1% 25% 10.0 14.0 14.0
50% 13.0 17.0 17.0

757 15.0 18.5 18.5

100% 17.0 20.0 20.0

5% 25% 7.0 9.0 9.0
50% 10.0 13.0 13,0

75% 11.5 14.0 14.0

100% 13.0 15.0 15.0

107 25% 5.0 5.0 5.0
50% 8.0 8.0 8.0

75% 9.0 9.0 9,0

100% 10.0 10.0 10.0
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abgsorption obtainable was dependent upon the portion of the board that
was enclosed at any instant of time. Since vibrational energy spreads
through the board, the noise level at the operator position 1s dependent
upon the percentage of the board that is within the enclosure. Noise
levels for boards of length less than the machine length were signifi-
cantly reduced, while the reduction for lenger boards was considerably
less. Boards whose length exceeded the length of the enclosure pro-
duced sound levels which varied with the position of the board with
respect to the enclosure, The sound levels were noted to steadily de-
crease as the longer boards submerged into the enclosure until the
leading end of the board began to emerge from the output side of the
planer.

The effectiveness of the enclosure decreases with increasing board
length as shown in Figure 6.24. TFor boards of length greater than three
feet, the noise level varied with position as indicated in Figure 6.25.

In order to evaluate the relative importance of each section of
the enclosure, measurements were taken with different sections removed.
Figure 6.26 shows the reduction in noise level for two and six feet
long boards as the wvarious s;ctions of the enclosure are added. The
directivity characteristics, shown in Figure 6,27, remain essentially
the same for operation with and without the acoustic enclosuré. Direc~
tivity characteristics, shown in Figure 6.28, for different board widths
would be expected to maintain a similar relationship for operation with

the acoustic enclosure,.
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7. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The important result obtained in the development of a model for
board vibration for the special case of a periodic forcing function was

given by equation (4.50) as

3]

sin(nmx/2)sin(arx /2)
Y(x,w) = L 2

1
b GL - 2 7.2 2
B n=1 w, (l-(w/mn) ) +61

- Ao(jmo)ﬁ(w—jwo) (7.1)
for the response in the frequency domain. The response at each fre-
quency (jwo) is seen to be weighted by the frequency response function
of the beam. Thus the frequency spectrum of board vibration for the
- planer 1is a discrete spectra with peaks occurring at each harmonic of
the blade passage frequency with the amplitude governed by the nearness
of these forced frequencies to natural resonant frequencies of the
board. TFigure 3.6 indicates the close agreement of the vibration spec-
tra ofAthe board with that predicted by equation (4.50), The excellent
correlation of the sound and acceleration spectra shown in Figures 6,15
and 6.16, indicates the importance of board radiation as a noise gener-
ation mechanism as well as bearing out the theory for cutterheads having
four and six knives.

The important experimental result of a six decigel increase in
overall radiated sound power per doubling of board width was formulated
in terms of a source stfength parameter, This source strength was

determined to be proportional to board width near the critical frequency
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resulting in equation (6.2) for the sound power level proportionality,

il.e.;
L, 10 log (QS)2 n 20 log(W) (7.2)

Figure 3.7 illustrated this increase along with experimental values
of radiated sound power,

For frequencies near the critical frequency, where the sound
radiation is concentrated; the piston model of Chapter 5 gave the sound

power output as

Lw = 10 loglo(wz) + 20 loglo(fo)
=2
+ 16 log10(£<Vo>) - 10 loglo(f)
+ 10 1oglo(wpa/2Po) ) (7.3)

In the immediate vicinity of the critical frequency equation (7.3) can

be written in terms of the proportionality;
Ly(£=£ ) = 20 log, (W) (7.4)

Thus, the theoretical acoustic power produced is also observed to
depend primarily on beam width and increases six decibels for each
doubling of width.

The experimental values obtained for the radiated sound power

level (overall), given in Figure 3.7, were cobtained by measuring the
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average sound pressure level over a hypothetical hemispherical surface
and accounting for the particular environment in accord with [11]. The
contributions to the radiated power occur at the blade passage frequency
and harmonies, with the major contributions being near the critical fre-
quency,

In Section 5.5.2 the actual radiated power for the four and eight
Iinch beam widths was computed. Contributions from the third, fourth,
fifth, and s;xth-harmonics were totaled to obtain the overall sound
power level., These levels were then adjusted according to [11] to give
the following values for the average sound pressure level at a five

foot radius;

=

~—
=
it

4) = 101 dB

. 107 dB

=
—~
=
]
o
o
]

which are in good agreement with the experimental results

L (W=4) 99 dB

1f

Lp (W= 8) 105 dB

>
measured five feet from the machine centerline. The theoretical
accuracy could be improved by obtaining an.exact measure.of the

‘quantity 2<V§> which was zssumed to be unity In this example.
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8. SUMMARY AND CONCLUSIONS

Several sources of planer noise have been identified, the major
sources being board vibration, rotational noise, and anvil vibration,
For most planers the board -radiation dominates as evidenced by the six
decibel increase in noise level per doubling of board width and the
excellent correlation between the sound and board vibration spectra.
The board length did nmot directly affect the radiation since the energy
is distributed along the length of the board, The energy input to the
board by the cutterhead 1s independent of board length but increases
with increasing board width.

The vibration model developed in Chapter 4 is valid strictly for
slender beams. The transition from a beam to a plate is generally
defined to occur when W/2 > 1/10, The model 1s valid for board widths
up to about one foot, which is usually the case for roughing planers.
Panels (W/% > 1/10) can be analyzed by a similar modal approach, allow-
ing for vibration parallel as well as perpendicular to the cutterhead.
Special attention was given to the case of periodic forces since this
is typical of most cutterheads. The vibration model serves as a guide
to cutterhead design since the relationship of the forced harmonics to
the beam resonances gdverns sound radiation near the critical frequency.
Non-periodic forcing functions obtained by shear type cutterheads can
also be compared with standard heads on a vibration basis,

The radiation model develeoped in Chapter 5 combines the phase cell
concept of structural vibration in terms of the critical frequency with
the classical radiation theory for rectangular pistons. This rectangu-

lar model is simplified to a square piston in most cases., The radiated



power was giveﬁ 5y equatiﬁn (5.13).as Pa'ﬂ‘Rrad é32> where the radia-
tion resistance is deﬁendenﬁ on the “Ka" factor, the structural area,
.and coustants of the medium. The velocity term is a mean-square space-
time average which, in a reverberant vibrational field, is assumed to

.have the same average properties for each piston element. .

In order to represent the radiated power by equation (5.13), the
modes are assumed to be excited by a random noise in & narrow bandwidth .
8w centered on frequency w, .and the space—-time average transverse
-velocities of the modes within the band are assumed to be equal. The
equation governing the pure~tone response of any single mode can be
written as the product (imvm), where Zm 1s the sum of thé mgchanical
and radiatfon impedances. - The mechanical impedaﬁce 1s the impedance
" of ‘the simple rescnator that represenfs-one natu;ai mode of the struc-
ture in vacuo. In the derivation of  equation (5.13) for thé rédiated
.sound power, small forces.arising from ipternal dissipation and from
sound radiétion pressure that could tend to c;uple the response of
modes were neglected° | |

The baffled piston radiation properties were extended in an
gpproximate'maﬁner\to appiy to the case of an unbaffled pisten by ﬁsing
an analogy withra freely suspended disk, Expressiong for the radiation
resistance were obtained in three frequemcy ranges for both baffled and
unbaffled beams. The #elocity term to be used in equation (7.3) was
'“approximated using energy methods valid for réverberant fields £ather
than the more complex e#pressions qf Chapterlé.

The radiation ﬁédel consolidates and éxtends existing theory by

using the radiation properties of a rectangular piston exclusively.
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fhe important result that the major contribution to the radiated sound
) powef is concentrated near the critical frequency for wide boards and
spread out for narrower boards is apparent in the simple‘piston model.
The_piston model exhibits the iﬁportanf theo;etical trends of the
complex model of Section 5.4.3, while allowing quite simple.computa-_
tions of the radiated sound power.

The physicél parameters such as board wi&éh, critical frequency;
and board length-velocity product. are easily pﬁservéd from the piston
mnéel. The six decibei increase per doubling of width is explained in
relation to the power controlling critical frequency. There was good
agreement with experimental power measureméﬁts.

The expériqental study defines the effect of various sources and
parameters on the noise emitted in a manner which can be directly
applied to future machine design. The major source of plager noise
was determined ?xperimentally to be board radiation caused by the
periodic impact of the cutterhead kﬁi;es. Board width was féund to
~affect the sound 1ev;ls by an-increas; of six decibels per doubling oﬁ
board width, which indicates the dependence of source strength upen .
Width..‘

The length of the beard did not directly affect the noise levels
but had a pronounced effect on vibration level. The vibratiqn levels
decreased with increasing board length indicating a spreading'out of
- vibratory energy. Board length did, however, become quite important
when an acoustic enclosure was utilized since an enclosuf; is effective
only for thét portion of the board that is conﬁained within the enclo-

sure, Thus, longer boards produced greatef'noise levels at the
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operator p&sition. For this reason enclosures of.fhe type discussed
offer only limited mnoilse reduction, the amount depending on the size
of the enclosure and the length of the boards being ﬁlaned.
| The most promising means of noise réduction are; (l)_cutterhead
redesign, (2) vibration suppression, and (3) acoustic enclosures. .E;ch
of these areas have been studied in ﬁetail and significant improvements
realized, |

In general there has been excellent agreement between the theoreti-
. cal and experimental results. Many of the concepts developed have been
tested experimentally and successfully implemented on production iine
" machines, The progress that has been made toward‘understahding the

mechanism of noise generation in planing operations can be extended

'readily to other woodworking maéhinery.

=y
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9. RECOMMENDATIONS

The entire vibration model and phase cell concept of board
radiatfon can be extended to plates, which are typical of panels in
the woedworking industry.. This study was not pursued since the noise_
emission from most panels can be controlled by an enclosure in the
viéinity of the cutterhead (most ﬁanels are less than‘four feet long).

Additional study is needed iﬁ the area of cutterhead redesign,
since the exact effect of knife sharpness, helix angle, segmented knife
overlap, cutterhead speed,‘and cutterhead geometry on operational noise
levels is not known, although the results indic;te that the ideal case
is that of a true, tightly wound, helix.

The vibration suppression techniques have not been analyzed in
detail in regard to the factors affecting the reflection, transmiésion,
and absorption of vibratory emergy. The tire systeém could possibly be
‘designed to act as a dynamic vibfatidn absorber which would absorb
energy over a wide frequency rénge, and thus substantially reduce the
no;se output from the board., Modern day, high energy absorbing,
polymers could possibly be used in an energy absorbing capacity, or
incorporated into tire construction. -

Long range study areas include such revolutionary changes as the
use of laser beams to do many of the noi%y and pnsafe operations in
the woodworking industry with a significant reduction in waste and

waste products,
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11. LIST OF SYMBOLS

A Radiating surface area of vibrating structure

Acc. Acceleration

Ao | Fourier coefficient in se;iesAexpansion of waveform -
: Ar Area of reflecting room surfaces

a - Characteristic dimension of fadiator'

a,” Reference acceleration

<a> Space-time averaged acceleration

BFF Blade passage frequency |

b. Dimension of radiator

b

One-half the vector distance between monopole sources located

on each piston face

Ca Speed of sound in air

CB Transverse bending wave velocity

Cn -Gener;lized damping coefffciéﬁt for the nth mode of bean
vibration

73(3) Viscous damping coefificient.

d Length of rectangular piston element

dB Decibel

E ' Modulus of elasticity

ET" Total stored vibrational energy

F(x,t) Beam excitation function

F(x,w) Féurier transform of F(x,t).

F;{ } Denotes Fourler transform operation

F;l{ } Denotes inverse Fourler transform operation
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.'Q-N

uW

Beam radiation loading function
Frequency in Hertz

Cricical beam frequency

Harmonic.frequencies present in . excitation signal

Mode shape of beam vibrating in the nth mode
Unit of measure for acceleration-
Acceleration due to gravity

System frequency response function

Hertz (cycles per second)

System response to a-unit impulse

Area moment of inertia of beam cross section

V1

Zero order Bessel function

First order Bessel function

Integer

Acoustic wave number =,m/éa

Dimensionless product governing radiation
Dimensionless product governing radiation

Structural wave number = w/CB

Generalized sﬁiffness coefficient for nth mode of beam

vibration

Generalized force correépoﬁdiné to thé nth mode of beam
vibration .

Fourierltransform‘of Ln(x,t) with respect to time

Sound pressure level, referenced to 0.0002 pbar

Space average of sound pressure levels
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Re{ }
RPM

rad
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Sound power level, referenced to 10° > watts
Beam length

Total mass of beam

Generalized mass corresponding to the .nth mode of beam
vibration

Millivolts

Number of knives on cutterhead

Number of contributing pistoen elemepté

Integer

Acoustic power radiated to the far field
Reference. acoustic power, taken as 10"13 watts
Fourier transform of qn(t)

Acoustic source strengéh

Generalized coordinate corresponding to the nth normal
vibrational mode

Room constant

Denotes real part of quantiéy to Be'taken\
Revolutions per minute

Radiation resistance

Rad{ius pf radiating disk

Surface area of baffled beam = W2

System input power sﬁectral density

Surface area of test hemisphere

System output power specfral density

Period of signal

Real time
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Beam thickness
Reference beam.thickness
Instant of time

Transverse beam velocity

Reference beam velocity

Mean-square transverse beam velocity

Uidth'of beam -or.piston element

Reference width of beam or piston element
Coordinate zlong beam length.

Sﬁecific position along x.coordinate

Fourier transfﬁrm,of-y(x,f) with respect to time
Coordinate perpendicular to beam length -
Transferse displacemen£ of beam

Radiation impedance

Acaﬁstic ab;orption_coefficient

Coefficient typical of particular type of boundary conditio;s
Dirac delta function |

Internal damping coefficient

Damping factor

Damping factor for thie nth vibratiénal mode
Acoustic_losé'factor

Dissipation loss factor

Radiation efficiency function for square piston

‘Radiation efficiency function for rectangular piston
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Xa Acoustic wavelength
L Modal structural wavelength
As Structural wavelength
o Mass density
Py Mass demsity of air )
rpb Mass density of beam.
pc Specific acoustic impedance
o Radiation efficiency
T Time variable used in conjunction with convolution integral
Q Cross sectional area of beam
] Angular frequency
W, Natural vibrational frequency
Auw Small frequency increment centered on frequency Q
") Denotes differentiation with respect to time
(';) Denotes second derivative with respect to time
(')' Denotes differentiation with respect to x
(-)" Denotes second derivative with féspect to x
* Denotes couvolution operation
1 Indicates the radiation,resistgnce should be multiplied by a
2 factor of one for the baffled radiator and a factor of two

for the unbaffled radiator





